A115566 Numbers k such that 2^k, 2^(k+1) and 2^(k+2) have the same number of digits.
1, 4, 7, 10, 11, 14, 17, 20, 21, 24, 27, 30, 31, 34, 37, 40, 41, 44, 47, 50, 51, 54, 57, 60, 61, 64, 67, 70, 71, 74, 77, 80, 81, 84, 87, 90, 91, 94, 97, 100, 103, 104, 107, 110, 113, 114, 117, 120, 123, 124, 127, 130, 133, 134, 137, 140, 143, 144, 147, 150, 153, 154
Offset: 1
Examples
2^4 = 16, 2^5 = 32, 2^6 = 64: all these numbers have two digits. 2^10 = 1024, 2^11 = 2048, 2^12 = 4096: all these numbers have three digits.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [1..160]|#Intseq(2^k) eq #Intseq(2^(k+2))]; // Marius A. Burtea, May 20 2019
-
Maple
select(n -> ilog10(2^n)=ilog10(2^(n+2)), [$1..1000]); # Robert Israel, May 19 2019
-
Mathematica
Select[Range[220], Floor[Log[10, 2]*# ] == Floor[Log[10, 2]*(# + 2)] &]
Formula
floor(log_10(2)*k) = floor(log_10(2)*(k+1)) = floor(log_10(2)*(k+2)).
Comments