A124785
Semiprime sopfr of semiprimes A115585.
Original entry on oeis.org
4, 6, 9, 10, 10, 15, 14, 21, 25, 14, 22, 33, 26, 39, 22, 34, 49, 55, 22, 46, 26, 69, 34, 85, 26, 62, 91, 46, 74, 38, 111, 115, 82, 86, 34, 129, 133, 58, 141, 34, 106, 159, 169, 38, 183, 134, 201, 142, 213, 94, 235, 74, 166, 46, 253, 106, 259, 58, 265, 46, 86, 118, 194
Offset: 1
a(3)=9 because A115585(3)=14=2*7=>2+7=9=3*3,
a(6)=15 because A115585(6)=26=2*13=>2+13=15=3*5.
A124786
Numbers n such that n, sopfr(n) and sopfr(sopfr(n)) are all semiprimes.
Original entry on oeis.org
4, 14, 33, 38, 46, 49, 62, 69, 94, 129, 133, 134, 166, 169, 177, 205, 213, 217, 254, 262, 309, 334, 361, 393, 422, 445, 469, 489, 493, 502, 505, 526, 529, 614, 669, 718, 753, 793, 817, 865, 886, 889, 913, 933, 934, 961, 974, 982, 993, 1006, 1077, 1126, 1142
Offset: 1
Full table of {n, sopfr(n), sopfr(sopfr(n))}:
{4, 4, 4}, {14, 9, 6}, {33, 14, 9}, {38, 21, 10}, {46, 25, 10}, {62, 33, 14}, {69, 26, 15}, {94, 49, 14}, {129, 46, 25}, {134, 69, 26}, {166, 85, 22}, {177, 62, 33}, {213, 74, 39}, {217, 38, 21}, {254, 129, 46}, {262, 133, 26}, {309, 106, 55}, {334, 169, 26}, {393, 134, 69}, {422, 213, 74}, {445, 94, 49}, {489, 166, 85}, {502, 253, 34}, {526, 265, 58}.
-
isA001358 := proc(n) if numtheory[bigomega](n) = 2 then true ; else false ; fi ; end: A001414 := proc(n) local ifs; if n = 1 then 0; else ifs := ifactors(n)[2] ; add( op(1,i)*op(2,i),i=ifs) ; fi ; end: A081758 := proc(n) A001414(A001414(n)) ; end: isA124786 := proc(n) if isA001358(n) and isA001358(A001414(n)) and isA001358(A081758(n)) then true ; else false ; fi ; end: for n from 2 to 2000 do if isA124786(n) then printf("%d, ",n) ; fi : od: # R. J. Mathar, Sep 23 2007
-
semiprimeQ[n_] := PrimeOmega[n] == 2;
sopfr[n_] := Total[Times @@@ FactorInteger[n]];
okQ[n_] := semiprimeQ[n] && semiprimeQ[ sopfr[n]] && semiprimeQ[ sopfr@ sopfr@n];
Select[Range[2000], okQ] (* Jean-François Alcover, Jul 20 2024 *)
A187400
Semiprimes with a semiprime average of the two factors.
Original entry on oeis.org
15, 35, 51, 65, 77, 91, 115, 123, 141, 161, 185, 187, 201, 209, 219, 221, 235, 259, 267, 301, 305, 321, 339, 341, 355, 365, 377, 381, 403, 413, 427, 437, 451, 453, 481, 485, 497, 501, 537, 545, 589, 649, 667, 681, 689, 699, 717, 721, 723, 737, 745, 749, 763, 789, 835, 843, 849, 893, 901, 905
Offset: 1
The semiprime 187 = 11*17 is in the sequence, because the average (11+17)/2 = 14 = 2*7 is semiprime.
The semiprime 267 = 3*89 is in the sequence because the average (3+89)/2 = 46 = 2*23 is semiprime.
-
semiPrimeQ[n_] := Total[FactorInteger[n]][[2]] == 2; Reap[Do[{p, e} = Transpose[FactorInteger[n]]; If[Total[e] == 2 && semiPrimeQ[Total[p]/2], Sow[n]], {n, 1000}]][[2, 1]]
-
sopf(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
averg(n)={local(s); s=sopf(n)/omega(n);return(s)}
{ for (n=4, 10^3, m=averg(n);if(bigomega(n)==2,if(m==floor(m)&&bigomega(m)==2,print1(n, ", ")))) }
\\ Antonio Roldán, Oct 15 2012
-
list(lim)=my(v=List()); forprime(p=3,lim\3, forprime(q=3,min(p-2,lim\p), if(bigomega((p+q)/2)==2, listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Oct 16 2014
A271101
Squarefree semiprimes (A006881) whose average prime factor is prime.
Original entry on oeis.org
21, 33, 57, 69, 85, 93, 129, 133, 145, 177, 205, 213, 217, 237, 249, 253, 265, 309, 393, 417, 445, 469, 489, 493, 505, 517, 553, 565, 573, 597, 633, 669, 685, 697, 753, 781, 793, 813, 817, 865, 889, 913, 933, 949, 973, 985, 993, 1057, 1077, 1137, 1149, 1177, 1257, 1273, 1285, 1329
Offset: 1
133 is in the sequence because 133 is a squarefree semiprime: 133=7*19, and (7+19)/2=13, a prime number.
-
N:= 10000: # for terms <= N
Primes:= select(isprime, [seq(i, i=3..N/3)]):
SP:= [seq(seq([p, q], q = select(`<=`, Primes, min(p-1, N/p))), p=Primes)]:
B:= select(t -> isprime((t[1]+t[2])/2), SP):
sort(map(t -> t[1]*t[2], B)); # Robert Israel, Dec 14 2019
-
Select[Select[Range@ 1330, SquareFreeQ@ # && PrimeOmega@ # == 2 &], PrimeQ@ Mean[First /@ FactorInteger@ #] &] (* Michael De Vlieger, Mar 30 2016 *)
-
sopf(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
{for (n=6, 2*10^3, if(bigomega(n)==2&&omega(n)==2, m=sopf(n)/2;if(m==truncate(m),if(isprime(m), print1(n, ", ")))))}
Showing 1-4 of 4 results.
Comments