cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115671 Number of partitions of n into parts not congruent to 0, 2, 12, 14, 16, 18, 20, 30 (mod 32).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 34, 44, 56, 72, 91, 114, 143, 178, 220, 272, 334, 408, 498, 605, 732, 884, 1064, 1276, 1528, 1824, 2171, 2580, 3058, 3616, 4269, 5028, 5910, 6936, 8124, 9498, 11088, 12922, 15034, 17468, 20264, 23472, 27154, 31369
Offset: 0

Views

Author

Michael Somos, Jan 29 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Andrews (1987) refers to this sequence as p(S, n) where S is the set in equation (1) on page 437.

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + 15*x^9 + ...
a(5) = 4 since 5 = 4 + 1 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 in 4 ways.
a(6) = 6 since 6 = 5 + 1 = 4 + 1 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 in 6 ways.
		

Crossrefs

Programs

  • Haskell
    a115671 = p [x | x <- [0..], (mod x 32) `notElem` [0,2,12,14,16,18,20,30]]
       where p _          0 = 1
             p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Mar 03 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q] / QPochhammer[ q] + 1) / 2, {q, 0, n}]; (* Michael Somos, Nov 09 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^3 / QPochhammer[ q]^2 / QPochhammer[ q^4] + 1) / 2, {q, 0, n}]; (* Michael Somos, Nov 09 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A))) / 2, n))};
    

Formula

Expansion of (f(q) / f(-q) + 1) / 2 in powers of q where f() is a Ramanujan theta function.
Expansion of f(q^6, q^10) / f(-q, -q^3) = (f(q^22, q^26) - q^2 * f(q^10, q^38)) / f(-q, -q^2) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 32 sequence [ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, ...].
Given g.f. A(x), then B(x) = (2*A(x) - 1)^2 = g.f. A007096 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = 1 + u^2 - 2 * u * v^2.
G.f. (1 + sqrt( theta_3(x) / theta_4(x))) / 2 = (Sum_{k} x^(8*k^2 - 2*k)) / (Sum_{k} (-x)^(2*k^2 - k)) = (Sum_{k} x^(24*n^2 + 2*n) - x^(24*n^2 + 14*n + 2)) / (Product_{k>0} 1 - x^k).
2 * a(n) = A080054(n) unless n = 0. a(2*n + 2) = A208851(n). a(2*n + 1) = A187154(n). a(n + 1) = A208856(n).