cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115690 Squares whose digit reversal is a powerful(1) number (A001694).

Original entry on oeis.org

1, 4, 9, 100, 121, 144, 169, 400, 441, 484, 576, 676, 900, 961, 1089, 9801, 10000, 10201, 10404, 10609, 12100, 12321, 12544, 12769, 14400, 14641, 14884, 16900, 25281, 27225, 40000, 40401, 40804, 44100, 44521, 44944, 48400, 48841, 57600
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Comments

If x is a member, then so is 100*x. - Robert Israel, Mar 16 2020

Examples

			25281=159^2 and 18252=2^2*3^3*13^2 is powerful.
		

Crossrefs

Subsequence of A115656.
A033294 is a subsequence, and the main entry for this sequence.

Programs

  • Maple
    filter:= proc(n) local L,i,x;
      L:= convert(n,base,10);
      x:=add(L[-i]*10^(i-1),i=1..nops(L));
      andmap(t -> t[2]>=2, ifactors(x)[2]):
    end proc:select(filter, [seq(i^2,i=1..10^4)]); # Robert Israel, Mar 16 2020
  • PARI
    is(k) = ispowerful(fromdigits(Vecrev(digits(k))));
    select(is, vector(300, n, n^2)) \\ Michel Marcus, Nov 01 2022

Formula

Trivially, n^2 <= a(n) <= 100^(n-1). - Charles R Greathouse IV, Nov 01 2022

A173518 Solutions z of the Diophantine equation x^3 + y^3 = 6z^3.

Original entry on oeis.org

21, 960540, 16418498901144294337512360, 436066841882071117095002459324085167366543342937477344818646196279385305441506861017701946929489111120
Offset: 1

Views

Author

Michel Lagneau, Feb 20 2010

Keywords

Comments

A. Nitaj proved Erdős's conjecture (1975) and claimed that there exist infinitely many triples of 3-powerful numbers a,b,c with (a,b) = 1, such that a+b=c, because the equation x^3 + y^3 = 6z^3 admits an infinite number of solutions, and given by the recurrence equations (see formula). It is proved that a=x(k)^3, b=y(k)^3, and c=6c^3, and are 3-powerful numbers for each k >= 1.

Examples

			37^3 + 17^3 = 6*21^3.
		

References

  • J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 348.
  • Mordell, L. J. (1969). Diophantine equations. Academic Press. ISBN 0-12-506250-8

Crossrefs

Programs

  • Maple
    x0:=37:y0:=17:z0:=21: for p from 1 to 5 do: x1:=x0*(x0^3+ 2*y0^3):y1:=-y0*(2*x0^3+ y0^3):z1:=z0*(x0^3- y0^3): print(z1) : x0 :=x1 :y0 :=y1 :z0 :=z1 :od :

Formula

We generate the solutions (x(k),y(k),z(k)) from the initial solution x(0) = 37, y(0)=17, z(0)=21 x(k+1) = x(k)*(x(k)^3 + 2*y(k)^3) y(k+1) = -y(k)*(2*x(k)^3 + y(k)^3) z(k+1) = z(k)*(x(k)^3 - y(k)^3).
Showing 1-2 of 2 results.