A115715 A divide-and-conquer triangle.
1, 1, 1, 4, 0, 1, 4, 0, 1, 1, 4, 4, 0, 0, 1, 4, 4, 0, 0, 1, 1, 16, 0, 4, 0, 0, 0, 1, 16, 0, 4, 0, 0, 0, 1, 1, 16, 0, 4, 4, 0, 0, 0, 0, 1, 16, 0, 4, 4, 0, 0, 0, 0, 1, 1, 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1, 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 4, 0, 1; 4, 0, 1, 1; 4, 4, 0, 0, 1; 4, 4, 0, 0, 1, 1; 16, 0, 4, 0, 0, 0, 1; 16, 0, 4, 0, 0, 0, 1, 1; 16, 0, 4, 4, 0, 0, 0, 0, 1; 16, 0, 4, 4, 0, 0, 0, 0, 1, 1; 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1; 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1; 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1; 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1, 1; 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1; 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 1; 64, 0, 16, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Maple
A115715 := proc(n,k) option remember; if n = k then 1; elif k > n then 0; else -add(procname(n,l)*A115713(l,k),l=k+1..n) ; end if; end proc: seq(seq(A115715(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Sep 07 2016
-
Mathematica
A115713[n_, k_]:= If[k==n, 1, If[k==n-1, ((-1)^n-1)/2, If[n==2*k+2, -4, 0]]]; T[n_, k_]:= T[n, k]= If[k==n, 1, -Sum[T[n, j]*A115713[j, k], {j, k+1, n}]]; Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 23 2021 *)
-
Sage
@CachedFunction def A115713(n,k): if (k==n): return 1 elif (k==n-1): return -(n%2) elif (n==2*k+2): return -4 else: return 0 def A115715(n,k): if (k==0): return 4^(floor(log(n+2, 2)) -1) elif (k==n): return 1 elif (k==n-1): return (n%2) else: return (-1)*sum( A115715(n,j)*A115713(j,k) for j in (k+1..n) ) flatten([[A115715(n,k) for k in (0..n)] for n in (0..18)]) # G. C. Greubel, Nov 23 2021
Formula
Sum_{=0..n} T(n, k) = A032925(n).
T(n, 0) = A115639(n).
T(n, k) = 1 if n = k, otherwise T(n, k) = (-1)*Sum_{j=k+1..n} T(n, j)*A115713(j, k). - R. J. Mathar, Sep 07 2016