A115716 A divide-and-conquer sequence.
1, 1, 3, 1, 3, 1, 11, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 171, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 171, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 683, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 171, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + x^3 + 3*x^4 + x^5 + 11*x^6 + x^7 + 3*x^8 + x^9 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..16381
- R. Stephan, Divide-and-conquer generating functions. I. Elementary sequences , arXiv:math/0307027 [math.CO], 2003.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, `if`(n::odd, 1, 4*a(n/2-1)-1)) end: seq(a(n), n=0..100); # Alois P. Heinz, Sep 07 2016
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, If[OddQ[n], 1, 4*a[n/2-1]-1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 25 2017, after Alois P. Heinz *)
-
PARI
{a(n) = if( n<1, n==0, n%2, 1, 4 * a(n/2-1) - 1)}; /* Michael Somos, Sep 07 2016 */
Formula
The g.f. G(x) satisfies G(x)-4*x^2*G(x^2)=(1+2*x)/(1+x). - Argument and offset corrected by Bill Gosper, Sep 07 2016
G.f.: 1/(1-x) + Sum_{k>=0} ((4^k-0^k)/2) *x^(2^(k+1)-2) /(1-x^(2^k)). - corrected by R. J. Mathar, Sep 07 2016
a(0) = 1, a(2*n + 1) = 1 for n>=0. a(2*n + 2) = 4*a(n) - 1 for n>=0. - Michael Somos, Sep 07 2016