cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115717 A divide-and-conquer triangle related to A007583.

Original entry on oeis.org

1, 0, 1, 3, -1, 1, 0, 0, 0, 1, 0, 4, -1, -1, 1, 0, 0, 0, 0, 0, 1, 12, -4, 4, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 16, -4, -4, 4, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 48, -16, 16, 0, -4, -4, 4, 0, 0, 0, 0, 0, -1, -1, 1
Offset: 0

Views

Author

Paul Barry, Jan 29 2006

Keywords

Comments

Product of (1-x, x), which is A167374, and number triangle A115715.

Examples

			Triangle begins
   1;
   0,   1;
   3,  -1,  1;
   0,   0,  0,  1;
   0,   4, -1, -1,  1;
   0,   0,  0,  0,  0,  1;
  12,  -4,  4,  0, -1, -1,  1;
   0,   0,  0,  0,  0,  0,  0,  1;
   0,   0,  0,  4,  0,  0, -1, -1,  1;
   0,   0,  0,  0,  0,  0,  0,  0,  0,  1;
   0,  16, -4, -4,  4,  0,  0,  0, -1, -1,  1;
   0,   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1;
   0,   0,  0,  0,  0,  4,  0,  0,  0,  0, -1, -1,  1;
   0,   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1;
  48, -16, 16,  0, -4, -4,  4,  0,  0,  0,  0,  0, -1, -1,  1;
		

Crossrefs

Cf. A007583, A115715, A115716 (row sums), A167374.

Programs

  • Maple
    A115717 := proc(n,k)
        add( A167374(n,j)*A115715(j,k),j=k..n) ;
    end proc: # R. J. Mathar, Sep 07 2016
  • Mathematica
    A167374[n_, k_]:= If[k>n-2, (-1)^(n-k), 0];
    g[n_, k_]:= g[n, k]= If[k==n, 1, If[k==n-1, -Mod[n, 2], If[n==2*k+2, -4, 0]]]; (* g = A115713 *)
    f[n_, k_]:= f[n, k]= If[k==n, 1, -Sum[f[n,j]*g[j,k], {j,k+1,n}]]; (* f=A115715 *)
    A115717[n_, k_]:= A115717[n, k]= Sum[A167374[n,j]*f[j,k], {j,k,n}];
    Table[A115717[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 23 2021 *)
  • Sage
    @cached_function
    def A115717(n,k):
        def A167374(n, k):
            if (k>n-2): return (-1)^(n-k)
            else: return 0
        def A115713(n,k):
            if (k==n): return 1
            elif (k==n-1): return -(n%2)
            elif (n==2*k+2): return -4
            else: return 0
        def A115715(n,k):
            if (k==0): return 4^(floor(log(n+2, 2)) -1)
            elif (k==n): return 1
            elif (k==n-1): return (n%2)
            else: return (-1)*sum( A115715(n,j+k+1)*A115713(j+k+1,k) for j in (0..n-k-1) )
        return sum( A167374(n, j+k)*A115715(j+k, k) for j in (0..n-k) )
    flatten([[A115717(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 23 2021

Formula

Sum_{k=0..n} T(n, k) = A115716(n).
T(n ,k) = Sum_{j=k..n} A167374(n, j)*A115715(j, k). - R. J. Mathar, Sep 07 2016