A115720 Triangle T(n,k) is the number of partitions of n with Durfee square k.
1, 0, 1, 0, 2, 0, 3, 0, 4, 1, 0, 5, 2, 0, 6, 5, 0, 7, 8, 0, 8, 14, 0, 9, 20, 1, 0, 10, 30, 2, 0, 11, 40, 5, 0, 12, 55, 10, 0, 13, 70, 18, 0, 14, 91, 30, 0, 15, 112, 49, 0, 16, 140, 74, 1, 0, 17, 168, 110, 2, 0, 18, 204, 158, 5, 0, 19, 240, 221, 10, 0, 20, 285, 302, 20, 0, 21, 330, 407
Offset: 0
Examples
Triangle starts: 1; 0, 1; 0, 2; 0, 3; 0, 4, 1; 0, 5, 2; 0, 6, 5; 0, 7, 8; 0, 8, 14; 0, 9, 20, 1; 0, 10, 30, 2; From _Gus Wiseman_, Apr 12 2019: (Start) Row n = 9 counts the following partitions: (9) (54) (333) (81) (63) (711) (72) (6111) (432) (51111) (441) (411111) (522) (3111111) (531) (21111111) (621) (111111111) (3222) (3321) (4221) (4311) (5211) (22221) (32211) (33111) (42111) (222111) (321111) (2211111) (End)
Links
- Alois P. Heinz, Rows n = 0..600, flattened
- Findstat, St000183: The side length of the Durfee square of an integer partition
- Eric Weisstein's World of Mathematics, Durfee Square
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2): seq(seq(T(n, k), k=0..floor(sqrt(n))), n=0..30); # Alois P. Heinz, Apr 09 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[ T[n, k], {n, 0, 30}, {k, 0, Sqrt[n]}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *) durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]]; Table[Length[Select[IntegerPartitions[n],durf[#]==k&]],{n,0,10},{k,0,Sqrt[n]}] (* Gus Wiseman, Apr 12 2019 *)
Formula
T(n,k) = Sum_{i=0..n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts.
Comments