A115790 a(n) = 1 - (floor((n+1)*Pi) - floor(n*Pi)) mod 2.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
a(6)=0 because 7*Pi=21.99, 6*pi=18.85 and so a(6)=1-(21-18) mod 2 = 0; a(7)=1 because 8*Pi=25.13 and so a(7)=1-(25-21) mod 2 = 1;
Programs
-
Mathematica
Mod[1-(Last[#]-First[#]),2]&/@(Partition[Floor[Pi #]&/@ Range[ 0,110],2,1]) (* Harvey P. Dale, Oct 12 2012 *)
Formula
a(n) = 1 - (Floor((n+1)*Pi)-Floor(n*Pi)) mod 2.
a(n) = 1 - A115789(n). - Michel Marcus, Jul 15 2013
Comments