cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115790 a(n) = 1 - (floor((n+1)*Pi) - floor(n*Pi)) mod 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Hieronymus Fischer, Jan 31 2006

Keywords

Comments

The arithmetic mean 1/(n+1)*sum(a(k)|k=0...n) converges to Pi-3. What is effectively the same: the Cesaro limit (C1) of a(n) is Pi-3.

Examples

			a(6)=0 because 7*Pi=21.99, 6*pi=18.85 and so a(6)=1-(21-18) mod 2 = 0;
a(7)=1 because 8*Pi=25.13 and so a(7)=1-(25-21) mod 2 = 1;
		

Crossrefs

Programs

  • Mathematica
    Mod[1-(Last[#]-First[#]),2]&/@(Partition[Floor[Pi #]&/@ Range[ 0,110],2,1]) (* Harvey P. Dale, Oct 12 2012 *)

Formula

a(n) = 1 - (Floor((n+1)*Pi)-Floor(n*Pi)) mod 2.
a(n) = 1 - A115789(n). - Michel Marcus, Jul 15 2013