cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115874 Integers i such that 19*i = 55 X i.

Original entry on oeis.org

0, 7, 14, 28, 31, 56, 62, 63, 112, 119, 124, 126, 127, 224, 238, 248, 252, 254, 255, 448, 455, 476, 496, 504, 508, 510, 511, 896, 910, 952, 992, 1008, 1016, 1020, 1022, 1023, 1792, 1799, 1820, 1823, 1904, 1911, 1984, 1991, 2016, 2032, 2040, 2044
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Comments

Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
From Robert Israel, Apr 08 2018: (Start)
n is in the sequence if and only if 2*n is.
If n is in the sequence, then so is (2^k+1)*n if 2^k > n.
Contains 2^k-1 for k >= 5. (End)

Crossrefs

Row 19 of A115872. Superset of A115876? A115875 shows this sequence in binary.

Programs

  • Maple
    X:= proc(a,b) local A,B,C;
    A:= convert(a,base,2);
    B:= convert(b,base,2);
    C:= expand(add(A[i]*x^(i-1),i=1..nops(A))*add(B[i]*x^(i-1),i=1..nops(B))) mod 2;
    eval(C,x=2)
    end proc:
    select(t -> 19*t = X(55,t), [$0..10^4]); # Robert Israel, Apr 08 2018
  • Mathematica
    X[a_, b_] := Module[{A, B, C},
         A = Reverse@IntegerDigits[a, 2];
         B = Reverse@IntegerDigits[b, 2];
         C = Expand[
            Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*
            Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];
         PolynomialMod[C, 2] /. x -> 2];
    Select[Range[0, 10^4], 19*# == 55~X~#&] (* Jean-François Alcover, Jan 04 2022, after Robert Israel *)

Extensions

Offset corrected by Robert Israel, Apr 08 2018