A115874 Integers i such that 19*i = 55 X i.
0, 7, 14, 28, 31, 56, 62, 63, 112, 119, 124, 126, 127, 224, 238, 248, 252, 254, 255, 448, 455, 476, 496, 504, 508, 510, 511, 896, 910, 952, 992, 1008, 1016, 1020, 1022, 1023, 1792, 1799, 1820, 1823, 1904, 1911, 1984, 1991, 2016, 2032, 2040, 2044
Offset: 1
Keywords
Links
Programs
-
Maple
X:= proc(a,b) local A,B,C; A:= convert(a,base,2); B:= convert(b,base,2); C:= expand(add(A[i]*x^(i-1),i=1..nops(A))*add(B[i]*x^(i-1),i=1..nops(B))) mod 2; eval(C,x=2) end proc: select(t -> 19*t = X(55,t), [$0..10^4]); # Robert Israel, Apr 08 2018
-
Mathematica
X[a_, b_] := Module[{A, B, C}, A = Reverse@IntegerDigits[a, 2]; B = Reverse@IntegerDigits[b, 2]; C = Expand[ Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]* Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]]; PolynomialMod[C, 2] /. x -> 2]; Select[Range[0, 10^4], 19*# == 55~X~#&] (* Jean-François Alcover, Jan 04 2022, after Robert Israel *)
Extensions
Offset corrected by Robert Israel, Apr 08 2018
Comments