cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A115885 The n-th prime minus n gives a palindrome.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 32, 55, 57, 61, 71, 90, 95, 99, 114, 116, 126, 135, 137, 171, 173, 182, 230, 349, 399, 415, 457, 488, 610, 653, 739, 903, 951, 997, 1010, 1036, 1050, 1231, 1396, 1478, 1508, 1542, 1612, 1660, 1906, 1948, 2032, 2092, 2152, 2242
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			p(126)-126=575.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_]:=Module[{digs=IntegerDigits[Prime[n]-n]},digs==Reverse[digs]]; Select[Range[2400],palQ] (* Harvey P. Dale, Dec 15 2011 *)

A115888 Palindromes equal to the sum of a prime number with its index.

Original entry on oeis.org

3, 5, 8, 11, 101, 242, 383, 424, 454, 545, 585, 606, 666, 676, 757, 949, 2552, 3443, 3663, 4664, 5445, 6006, 6886, 9339, 10001, 10601, 11411, 12321, 15551, 15651, 17871, 17971, 18281, 21412, 22622, 22922, 24642, 24942, 25752, 26762, 28582
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			666 = prime(103)+103.
		

Crossrefs

Subsequence of A002113.

Programs

  • Mathematica
    Select[Total/@Table[{n,Prime[n]},{n,3200}],PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 03 2017 *)
  • PARI
    ispal(n) = my(e=digits(n));e == Vecrev(e) \\ A002113
    for(k=1,10^6, b=k+prime(k);if(ispal(b),print1(b,", "))) \\ Alexandru Petrescu, Jun 15 2022

A173638 The n-th semiprime plus n gives a palindrome in base 10.

Original entry on oeis.org

1, 2, 11, 17, 20, 23, 25, 35, 40, 48, 53, 59, 69, 86, 94, 100, 128, 133, 138, 141, 145, 194, 211, 216, 224, 232, 282, 326, 450, 615, 665, 824, 876, 929, 1171, 1197, 1267, 1290, 1293, 1450, 1498, 1520, 1566, 1655, 1790, 1898, 2248, 2313, 2624, 2786, 2826, 2849, 2912, 3058, 3082, 3098, 3270, 3290, 3408, 3586, 3610, 3672, 3792, 3912, 3945, 3982, 4000
Offset: 1

Views

Author

Jonathan Vos Post, Nov 23 2010

Keywords

Comments

This is to semiprimes A001358 as A115884 is to primes A000040.

Examples

			a(1) = 1 because 1st semiprime = 4, 4+1=5 is trivially a palindrome.
a(2) = 2 because 2nd semiprime = 6, 6+2=8 is trivially a palindrome.
a(3) = 11 because 11th semiprime = 33, 33+11=44 is nontrivially a palindrome.
a(4) = 17 because 17th semiprime = 49, 49+17=66 is nontrivially a palindrome.
a(5) = 20 because 20th semiprime = 57, 57+20=77 is nontrivially a palindrome.
a(8) = 35 because 35th semiprime = 106, 106+35=141 is nontrivially a palindrome.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=20000,sems},sems=Select[Range[nn],PrimeOmega[#]==2&]; Select[ Thread[{Range[Length[sems]],sems}],Total[ #]==IntegerReverse[Total[ #]]&]] [[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 08 2016 *)

Formula

{n: n + A001358(n) is in A002113} == {n: n + A001358(n) = R(n)} == {n: n + A001358(n) = A004086(n)}.

A115901 Numbers k such that prime(k) - k and prime(k) + k are palindromes.

Original entry on oeis.org

1, 2, 3, 4, 71, 116, 7271, 43585895
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Intersection of A115884 and A115885.

Examples

			prime(43585895) - 43585895 = 806494608 and
prime(43585895) + 43585895 = 893666398.
		

Crossrefs

A116037 n+p(n)+p(p(n)) is a palindrome, where p(n) denotes the n-th prime.

Original entry on oeis.org

1, 17, 20, 29, 253, 344, 370, 445, 479, 675, 786, 887, 1539, 3115, 4221, 4271, 6002, 6416, 7657, 9015, 10003, 11563, 12651, 12984, 14200, 14494, 14880, 14928, 15504, 15738, 17064, 18008, 18265, 18395, 19065, 21795, 23093, 23676, 24078, 24570
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			10003+p(10003)+p(p(10003)) = 1481841.
		

Crossrefs

Cf. A115884.
Showing 1-5 of 5 results.