cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A115927 a(n) is the number of k such that k and n*k, taken together, are pandigital.

Original entry on oeis.org

0, 48, 6, 8, 12, 0, 1, 16, 3, 0, 0, 1, 1, 6, 3, 1, 19, 6, 4, 12, 0, 3, 3, 4, 3, 9, 2, 1, 8, 2, 0, 16, 1, 3, 14, 0, 3, 7, 3, 4, 0, 3, 1, 13, 4, 1, 6, 0, 1, 12, 0, 2, 28, 1, 4, 6, 1, 3, 6, 3, 0, 28, 1, 1, 10, 1, 1, 4, 5, 7, 0, 3, 3, 11, 0, 2, 8, 1, 1, 46, 0, 0, 5, 3, 1, 7, 5, 6, 8, 3, 0, 13, 2, 3
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

There are 1549586 nonzero terms in a(n). The largest n for which a(n) > 0 is 987654320. The largest a(n) is a(2) = 48. - Chai Wah Wu, May 24 2015

Examples

			a(7)=1 since there is only one number, k=14076, such that k and 7*k=98532.
a(9)=3 since there are 3 such numbers: 10638, 10647 and 10836.
		

Crossrefs

Programs

  • Python
    from itertools import permutations
    l = {}
    for d in permutations('0123456789', 10):
        if d[0] != '0':
            for i in range(9):
                if d[i+1] != '0':
                    q, r = divmod(int(''.join(d[:i+1])),int(''.join(d[i+1:])))
                    if not r:
                        if q in l:
                            l[q] += 1
                        else:
                            l[q] = 1
    A115927_list = [0]*max(l)
    for d in l:
        A115927_list[d-1] = l[d] # Chai Wah Wu, May 24 2015

A114126 Numbers k such that k and 8*k, taken together, are pandigital.

Original entry on oeis.org

10459, 10469, 10537, 10579, 10592, 10674, 10679, 10742, 10794, 10932, 10942, 10953, 10954, 12073, 12307, 12345
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			10459 and 83672 = 10459*8 together contain all the 10 digits once.
		

Crossrefs

Programs

  • Mathematica
    f[a_]:=Join[IntegerDigits[a],IntegerDigits[8*a]];Select[Range[10000,100000],ContainsExactly[f[#],{0,1,2,3,4,5,6,7,8,9}]&&Length[f[#]]==10&] (* James C. McMahon, Jul 30 2024 *)

A115923 Numbers k such that k and 3*k, taken together, are pandigital.

Original entry on oeis.org

16794, 17694, 20583, 23058, 30582, 32058
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			16794 and 50382=16794*3 together contain all the 10 digits once.
		

Crossrefs

Programs

  • Mathematica
    pdQ[n_]:=Sort[Flatten[Join[{IntegerDigits[n],IntegerDigits[3n]}]]] == Range[0,9]; Select[Range[10000,99999],pdQ] (* Harvey P. Dale, Jul 07 2012 *)
  • PARI
    {for(n=10234, 49876, #Set(digits(n))==5||next; #Set(digits(n*3))==5 && #Set(concat(digits(n), digits(n*3)))==10 && print1(n", "))} \\ M. F. Hasler, Feb 08 2014

A115924 Numbers k such that k and 4*k, taken together, are pandigital.

Original entry on oeis.org

15237, 17235, 17352, 20394, 20439, 21735, 23517, 23715
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			15237 and 60948=15237*4 together contain all the 10 digits once.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10234,24987],Sort[Join[IntegerDigits[4 #],IntegerDigits[ #]]] == Range[0,9]&] (* Harvey P. Dale, Jun 01 2017 *)
  • PARI
    {for(n=10234, 24987, #Set(digits(n))==5||next; #Set(digits(n*4))==5 && #Set(concat(digits(n), digits(n*4)))==10 && print1(n", "))} \\ M. F. Hasler, Feb 08 2014

A115925 Numbers k such that k and 5*k, taken together, are pandigital.

Original entry on oeis.org

13458, 13584, 13854, 14538, 14586, 14658, 15384, 15846, 15864, 18534, 18546, 18654, 20697, 20769, 20937, 20967, 20973, 26097, 26956, 26958, 26970, 27096, 27609, 27690, 29076, 29356, 29358, 29370, 29536, 29538, 29566, 29586, 29607, 29670, 29706, 29730, 30972, 32097, 32956
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			13458 and 67290=13458*5 together contain all the 10 digits once.
		

Crossrefs

Programs

  • Mathematica
    pdQ[n_]:=Module[{idn=IntegerDigits[n],idn5=IntegerDigits[5n]},Union[Join[idn,idn5]]==Range[0,9]]
    Select[Range[50000],pdQ]  (* Harvey P. Dale, Mar 06 2011 *)

Extensions

More terms from Harvey P. Dale, Mar 06 2011
Showing 1-5 of 5 results.