A115957 Numbers k having exactly 3 distinct prime factors, the largest of which is greater than or equal to sqrt(k) (i.e., sqrt(k)-rough numbers with exactly 3 distinct prime factors).
42, 66, 78, 102, 110, 114, 130, 138, 156, 170, 174, 186, 190, 204, 222, 228, 230, 238, 246, 255, 258, 266, 276, 282, 285, 290, 310, 318, 322, 342, 345, 348, 354, 366, 370, 372, 402, 406, 410, 414, 426, 430, 434, 435, 438, 444, 460, 465, 470, 474, 483, 492
Offset: 1
Keywords
Examples
156 is in the sequence because it has 3 distinct prime factors (2, 3 and 13) and 13 > sqrt(156).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:=proc(n) if nops(factorset(n))=3 and factorset(n)[3]^2>=n then n else fi end: seq(a(n),n=1..530);
-
Mathematica
Select[Range[500],PrimeNu[#]==3&&FactorInteger[#][[-1,1]]>=Sqrt[#]&] (* Harvey P. Dale, Apr 09 2019 *)