A115958 Numbers k having exactly 4 distinct prime factors, the largest of which is greater than or equal to sqrt(k) (i.e., sqrt(k)-rough numbers with exactly 4 distinct prime factors).
930, 1110, 1230, 1290, 1410, 1590, 1770, 1806, 1830, 1974, 2010, 2130, 2190, 2226, 2370, 2478, 2490, 2562, 2670, 2814, 2910, 2982, 3030, 3066, 3090, 3210, 3270, 3318, 3390, 3486, 3660, 3738, 3810, 3930, 4020, 4074, 4110, 4170, 4242, 4260, 4326, 4380
Offset: 1
Keywords
Examples
3660 is in the sequence because it has 4 distinct prime factors (2, 3, 5 and 61) and 61 > sqrt(3660).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:=proc(n) if nops(factorset(n))=4 and factorset(n)[4]^2>=n then n else fi end: seq(a(n),n=1..4500);
-
Mathematica
pf4Q[n_]:=Module[{f=FactorInteger[n]},Length[f]==4 && f[[-1,1]] >= Sqrt[ n]]; Select[Range[5000],pf4Q] (* Harvey P. Dale, Sep 13 2017 *)
Comments