A306508 Squarefree numbers that have fully composite idempotent factorizations.
210, 462, 570, 1155, 1302, 1330, 1365, 1785, 2210, 2310, 2730, 3003, 3410, 3710, 3990, 4305, 4515, 4758, 4810, 5005, 5187, 5474, 5610, 5642, 6006, 6105, 6118, 6270, 6510, 6622, 6630, 7410, 7770, 8265, 8385, 8463, 8645, 9282, 9471, 9870, 10010, 10101, 10230, 10374, 10545, 10582
Offset: 1
Keywords
Examples
210=10*21, 462=22*21, 570=10*57, 1155=21*55, 1302=6*217, 1330=10*133, 1365=15*91 and 1785=21*85 are the fully composite idempotent factorizations for the first eight terms.
Links
- Barry Fagin, Table of n, a(n) for n = 1..63737
- Barry Fagin, All n < 2^27 and their fully composite idempotent factorizations
- Barry Fagin, Idempotent Factorizations of Square-Free Integers, Information 2019, 10(7), 232.
- Barry Fagin, Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers, Information (2021) Vol. 12, No. 8, 305.
Crossrefs
Programs
-
PARI
isokc(p, q, n) = (p != 1) && !isprime(p) && !isprime(q) && (frac((p-1)*(q-1)/lcm(znstar(n)[2])) == 0); isok(n) = {if (issquarefree(n) && omega(n) >= 3, my(d = divisors(n)); for (k=1, #d\2, if (isokc(d[k], n/d[k], n), return (1););););} \\ Michel Marcus, Feb 22 2019
-
Python
for n in range(2,max_n): factor_list = numbthy.factor(n) numFactors = len(factor_list) if numFactors <= 3: continue if not bsflib.is_composite_and_square_free_with_list(n,factor_list): continue fciFactorizations = bsflib.fullyCompositeIdempotentFactorizations(n,factor_list) numFCIFs = len(fciFactorizations) if numFCIPs > 0: fcIdempotents += 1 print(n)
Comments