A115994 Triangle read by rows: T(n,k) is number of partitions of n with Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))).
1, 2, 3, 4, 1, 5, 2, 6, 5, 7, 8, 8, 14, 9, 20, 1, 10, 30, 2, 11, 40, 5, 12, 55, 10, 13, 70, 18, 14, 91, 30, 15, 112, 49, 16, 140, 74, 1, 17, 168, 110, 2, 18, 204, 158, 5, 19, 240, 221, 10, 20, 285, 302, 20, 21, 330, 407, 34, 22, 385, 536, 59, 23, 440, 698, 94, 24, 506, 896, 149, 25
Offset: 1
Examples
T(5,2) = 2 because the only partitions of 5 having Durfee square of size 2 are [3,2] and [2,2,1]; the other five partitions ([5], [4,1], [3,1,1], [2,1,1,1] and [1,1,1,1,1]) have Durfee square of size 1. Triangle starts: 1; 2; 3; 4, 1; 5, 2; 6, 5; 7, 8; 8, 14; 9, 20, 1; ...
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
- G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
Links
- Alois P. Heinz, Rows n = 1..1000, flattened
- E. R. Canfield, From recursions to asymptotics: Durfee and dilogarithmic deductions, Advances in Applied Mathematics, Volume 34, Issue 4, May 2005, Pages 768-797
- E. R. Canfield, S. Corteel, C. D. Savage, Durfee Polynomials, Electronic Journal of Combinatorics 5 (1998), #R32.
- S. B. Ekhad, D. Zeilberger, A Quick Empirical Reproof of the Asymptotic Normality of the Hirsch Citation Index (First proved by Canfield, Corteel, and Savage), arXiv preprint arXiv:1411.0002, 2014.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, page 45
- Eric Weisstein's World of Mathematics, Durfee Square.
Crossrefs
Programs
-
Maple
g:=sum(t^k*q^(k^2)/product((1-q^j)^2,j=1..k),k=1..40): gser:=series(g,q=0,32): for n from 1 to 27 do P[n]:=coeff(gser,q^n) od: for n from 1 to 27 do seq(coeff(P[n],t^j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2): seq(seq(T(n, k), k=1..floor(sqrt(n))), n=1..30); # Alois P. Heinz, Apr 09 2012
-
Mathematica
Map[Select[#,#>0&]&,Drop[Transpose[Table[CoefficientList[ Series[x^(n^2)/Product[1-x^i,{i,1,n}]^2,{x,0,nn}],x],{n,1,10}]],1]] //Grid (* Geoffrey Critzer, Sep 27 2013 *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[T[n, k], {n, 1, 30}, {k, 1, Sqrt[n]}] // Flatten (* Jean-François Alcover, Dec 25 2015, after Alois P. Heinz *)
Formula
G.f.: sum(k>=1, t^k*q^(k^2)/product(j=1..k, (1-q^j)^2 ) ).
T(n,k) = Sum_{i=0}^{n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts.
Extensions
Edited and verified by Franklin T. Adams-Watters, Mar 11 2006
Comments