A116073 Sum of the divisors of n that are not divisible by 5.
1, 3, 4, 7, 1, 12, 8, 15, 13, 3, 12, 28, 14, 24, 4, 31, 18, 39, 20, 7, 32, 36, 24, 60, 1, 42, 40, 56, 30, 12, 32, 63, 48, 54, 8, 91, 38, 60, 56, 15, 42, 96, 44, 84, 13, 72, 48, 124, 57, 3, 72, 98, 54, 120, 12, 120, 80, 90, 60, 28, 62, 96, 104, 127, 14, 144, 68, 126, 96, 24
Offset: 1
References
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 463 Entry 4(i).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[p == 5, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
-
PARI
a(n) = if(n<1, 0, sumdiv(n,d,(d%5>0)*d))
Formula
a(n) is multiplicative with a(5^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) otherwise.
G.f.: Sum_{k>0} k*x^k/(1-x^k) - 5*k*x^(5*k)/(1-x^(5*k)).
L.g.f.: log(Product_{k>=1} (1 - x^(5*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (Pi^2/15) * n^2. - Amiram Eldar, Oct 04 2022
Inverse Mobius transf. of A091703. Dirichlet g.f. (1-5^(1-s))*zeta(s-1)*zeta(s). - R. J. Mathar, May 17 2023