cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116157 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) + a(n-5).

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 17, 22, 43, 60, 110, 161, 283, 428, 732, 1132, 1901, 2984, 4950, 7848, 12912, 20609, 33721, 54065, 88137, 141737, 230490, 371411, 602982, 972961, 1577840, 2548288, 4129457, 6673335, 10808634, 17474230, 28293116, 45753765, 74064872, 119794804
Offset: 0

Views

Author

Nikita Gogin & Aleksandr Myllari (alemio(AT)utu.fi), Apr 15 2007

Keywords

Comments

A Fibonacci-Padovan sequence.
The summation over some naturally chosen planes in the pyramid composed of MacWilliams transform matrices yields this sequence, which is the convolution of the Fibonacci numbers and the (alternating) Padovan numbers. Namely, the formula F(n) = Sum_{i+k=n, i>0, k>0} binomial(k,i) = Sum_{i+k=n, i>0, k>0} Krawtchouk[{k,i},0] where Krawtchouk[{k,i},x] is the i-th Krawtchouk polynomial of order k has a natural generalization as G(n) = Sum_{i+j+k=n, i>0,j>0, k>0} Krawtchouk[{k,i},j].

Crossrefs

Programs

  • GAP
    a:=[1,1,3,3,7];; for n in [6..50] do a[n]:=a[n-1]+2*a[n-2]- 2*a[n-3]+a[n-5]; od; a; # G. C. Greubel, May 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x-x^2)*(1-x^2+x^3)) )); // G. C. Greubel, May 10 2019
    
  • Mathematica
    a[0]=1; a[1]=1; a[2]=3; a[3]=3; a[4]=7; a[n_]:=a[n]=a[n-1]+2a[n-2]-2a[n-3]+a[n-5]; Table[a[n], {n, 0, 50}]
    LinearRecurrence[{1,2,-2,0,1},{1,1,3,3,7},50] (* Harvey P. Dale, Mar 07 2015 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/((1-x-x^2)*(1-x^2+x^3))) \\ G. C. Greubel, May 10 2019
    
  • Sage
    (1/((1-x-x^2)*(1-x^2+x^3))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, May 10 2019
    

Formula

G.f.: 1/((1-x-x^2)*(1-x^2+x^3)).