cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116168 Numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 8.

Original entry on oeis.org

19, 32, 16284704, 35576083, 15764836187996024260119639732979, 19807200907254352332962649366152, 20298517078413563250826300137112, 30190765850423053042937262322867, 30796637697589506772859224996627
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k+8 gives the product of two numbers which differ by 6.

Examples

			35576083//35576084 = 59645686 * 59645694, where // denotes concatenation.
35576083//35576091 = 59645687 * 59645693.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 15 2007

A116292 Numbers k such that k * (k + 8) is the concatenation of a number m with itself.

Original entry on oeis.org

3, 93, 377, 616, 707, 902, 993, 8760, 9993, 45455, 54538, 99993, 693062, 999993, 8181811, 9999993, 88235287, 99999993, 327935223, 330669331, 363636364, 418318516, 428571429, 461538454, 538461539, 571428564, 581681477, 636363629, 669330662, 672064770, 691571587, 756506652, 781954880, 789473685
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 09 2025: (Start)
Numbers k such that k * (k + 6) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d-7 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    seq(op(q(d,8)),d=1..10); # Robert Israel, Apr 09 2025
  • Mathematica
    ccnQ[n_]:=With[{ccc=With[{c=n(n+8)},TakeDrop[IntegerDigits[c],IntegerLength[c]/2]]},ccc[[1]]==ccc[[2]]];  Select[Range[10^6],ccnQ]//Quiet (* The program generates the first 14 terms of the sequence. *) (* Harvey P. Dale, Jul 05 2025 *)

Extensions

Name edited and more terms from Robert Israel, Apr 09 2025

A116146 Numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 8.

Original entry on oeis.org

47, 550, 802, 570035, 623387, 1327222, 4041011, 8252210, 164398539591831062, 173868055738777586, 339918283297349107, 353476744122425611, 846974882088186070, 868300386379144450, 1875603455546506870
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			8252210//8252208 = 9084164 * 9084172, where // denotes concatenation.
		

Crossrefs

A116160 Numbers k such that k concatenated with itself gives the product of two numbers which differ by 7.

Original entry on oeis.org

4, 94, 210, 294, 994, 5880, 9994, 52888, 99994, 127044, 414180, 999994, 8264470, 9999994, 12456750, 41868508, 99999994, 112670544, 441341880, 468144040, 669421494, 702338994, 715976338, 750005718, 960645294, 999999994
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116162 Numbers k such that k concatenated with itself gives the product of two numbers which differ by 9.

Original entry on oeis.org

2, 92, 180, 332, 486, 536, 992, 9720, 9992, 13220, 40502, 99992, 941486, 999992, 2066120, 2975202, 9999992, 77854680, 99999992, 123250136, 162423540, 243964010, 256109750, 356387462, 421110162, 542936282, 547361900
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Showing 1-5 of 5 results.