cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116291 Numbers k such that k * (k + 7) is the concatenation of a number m with itself.

Original entry on oeis.org

4, 94, 455, 539, 994, 7665, 9994, 72721, 99994, 356429, 643565, 999994, 9090910, 9999994, 35294118, 64705876, 99999994, 335664329, 664335665, 684210520, 818181819, 838056674, 846153847, 866028702, 980125139, 999999994
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 09 2025: (Start)
Numbers k such that k * (k + 7) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d - 6 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    [seq(op(q(d,7)),d=1..10)]; # Robert Israel, Apr 09 2025

A116161 Numbers k such that k concatenated with itself gives the product of two numbers which differ by 8.

Original entry on oeis.org

3, 93, 145, 384, 505, 820, 993, 7680, 9993, 20665, 29748, 99993, 480340, 999993, 6694209, 9999993, 77854665, 99999993, 107541513, 109342209, 132231408, 174990384, 183673473, 213017748, 289940833, 326530608, 338353345
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116277 n times n+8 gives the concatenation of two numbers m and m-2.

Original entry on oeis.org

65, 738, 892, 755003, 789545, 3643102, 6356891, 9084164, 405460897734702722, 416974886220714236, 583025113779285757, 594539102265297271, 920312382883217574, 931826371369229088, 4330823773309769374
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			9084164 * 9084172 = 8252210//8252208, where // denotes
concatenation.
		

Crossrefs

A116293 Numbers k such that k * (k+9) is the concatenation of a number m with itself.

Original entry on oeis.org

2, 92, 420, 572, 693, 728, 992, 9855, 9992, 36355, 63637, 99992, 970298, 999992, 4545455, 5454537, 9999992, 88235295, 99999992, 351069983, 403018035, 493927126, 506072866, 596981957, 648930009, 736842097, 739839100, 766233767, 769230761, 827751188, 857142858, 860139852, 879699240, 909090910
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 09 2025: (Start)
Numbers k such that k * (k + 9) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d-8 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    seq(op(q(d,9)),d=1..10)

Extensions

Name edited and more terms from Robert Israel, Apr 09 2025

A116299 n times n+8 gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

40, 53, 40354307, 59645686, 39704957106129738595969799927610, 44505281604832422780051712184759, 45053875613995255103944518907119, 54946124386004744896055481092874, 55494718395167577219948287815234
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			59645686 * 59645694 = 35576083//35576084, where // denotes
concatenation.
		

Crossrefs

Showing 1-5 of 5 results.