cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A116292 Numbers k such that k * (k + 8) is the concatenation of a number m with itself.

Original entry on oeis.org

3, 93, 377, 616, 707, 902, 993, 8760, 9993, 45455, 54538, 99993, 693062, 999993, 8181811, 9999993, 88235287, 99999993, 327935223, 330669331, 363636364, 418318516, 428571429, 461538454, 538461539, 571428564, 581681477, 636363629, 669330662, 672064770, 691571587, 756506652, 781954880, 789473685
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 09 2025: (Start)
Numbers k such that k * (k + 6) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d-7 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    seq(op(q(d,8)),d=1..10); # Robert Israel, Apr 09 2025
  • Mathematica
    ccnQ[n_]:=With[{ccc=With[{c=n(n+8)},TakeDrop[IntegerDigits[c],IntegerLength[c]/2]]},ccc[[1]]==ccc[[2]]];  Select[Range[10^6],ccnQ]//Quiet (* The program generates the first 14 terms of the sequence. *) (* Harvey P. Dale, Jul 05 2025 *)

Extensions

Name edited and more terms from Robert Israel, Apr 09 2025

A116300 n times n+9 gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

26, 66, 3416102887775247376839416334668635, 3756559953325598880263233435801764, 4313503800489302411917772257282208
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			66 * 75 = 49//50, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    F:= proc(d) local t, g, Cands:
      t:= 10^d+1;
      if NumberTheory:-QuadraticResidue(85,t) <> 1 then return NULL fi;
      Cands:= map(s -> rhs(op(s)), [msolve(x^2 + 9*x - 1, t)]);
      g:= proc(r) local v; v:= r^2 + 9*r - 1; v >= t*(t-11)/10 and v < t*(t-2) end proc;
      op(sort(select(g, Cands)));
    end proc:
    map
    map(F, [$1..82]); # Robert Israel, Aug 25 2023
  • Python
    from itertools import count, islice
    from sympy import sqrt_mod_iter
    def A116300_gen(): # generator of terms
        for l in count(1):
            m = 10**l+1
            k, r, dlist = m*(m-11)/10, m*(m-2), []
            for a in sqrt_mod_iter(85,m):
                d = ((a if a&1 else a+m)>>1)-4
                if kA116300_list = list(islice(A116300_gen(),14)) # Chai Wah Wu, May 07 2024

A116162 Numbers k such that k concatenated with itself gives the product of two numbers which differ by 9.

Original entry on oeis.org

2, 92, 180, 332, 486, 536, 992, 9720, 9992, 13220, 40502, 99992, 941486, 999992, 2066120, 2975202, 9999992, 77854680, 99999992, 123250136, 162423540, 243964010, 256109750, 356387462, 421110162, 542936282, 547361900
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116284 n times n+9 gives the concatenation of two numbers m and m-1.

Original entry on oeis.org

32, 60, 804, 4778, 5214, 7406, 48208886, 51791106, 77620651, 4291816088, 4482541430, 5517458562, 5708183904, 9036996876, 9737360643, 3579205562000136225339579331, 3939042613182345526485238179
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Showing 1-4 of 4 results.