cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116292 Numbers k such that k * (k + 8) is the concatenation of a number m with itself.

Original entry on oeis.org

3, 93, 377, 616, 707, 902, 993, 8760, 9993, 45455, 54538, 99993, 693062, 999993, 8181811, 9999993, 88235287, 99999993, 327935223, 330669331, 363636364, 418318516, 428571429, 461538454, 538461539, 571428564, 581681477, 636363629, 669330662, 672064770, 691571587, 756506652, 781954880, 789473685
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 09 2025: (Start)
Numbers k such that k * (k + 6) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d-7 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    seq(op(q(d,8)),d=1..10); # Robert Israel, Apr 09 2025
  • Mathematica
    ccnQ[n_]:=With[{ccc=With[{c=n(n+8)},TakeDrop[IntegerDigits[c],IntegerLength[c]/2]]},ccc[[1]]==ccc[[2]]];  Select[Range[10^6],ccnQ]//Quiet (* The program generates the first 14 terms of the sequence. *) (* Harvey P. Dale, Jul 05 2025 *)

Extensions

Name edited and more terms from Robert Israel, Apr 09 2025

A116146 Numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 8.

Original entry on oeis.org

47, 550, 802, 570035, 623387, 1327222, 4041011, 8252210, 164398539591831062, 173868055738777586, 339918283297349107, 353476744122425611, 846974882088186070, 868300386379144450, 1875603455546506870
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			8252210//8252208 = 9084164 * 9084172, where // denotes concatenation.
		

Crossrefs

A116270 n times n+8 gives the concatenation of two numbers m and m-3.

Original entry on oeis.org

62, 45211539, 54788454, 78317866, 72388446037855609175404256, 73247326752475247326752671, 75267524732673267524732471, 76126405447292905676080886, 42053270820132695893502981749302
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			78317866 * 78317874 = 61336887//61336884, where // denotes
concatenation.
		

Crossrefs

A116276 Numbers k such that k*(k+5) gives the concatenation of two numbers m and m-2.

Original entry on oeis.org

70, 79822843, 69852478553064869297984899963805, 77473062193002372448027740546437, 77747359197583788609974143907617, 84341826458653210947638195982113, 85367942837521291760016984490249
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			79822843 * 79822848 = 63716866//63716864, where // denotes concatenation.
		

Crossrefs

A116278 n times n+9 gives the concatenation of two numbers m and m-2.

Original entry on oeis.org

7040, 487249777145, 512750222847, 684330069116
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			7040 * 7049 = 4962//4960, where // denotes concatenation.
		

Crossrefs

Showing 1-5 of 5 results.