A116184 Numbers n such that 37^3 divides the numerator of generalized harmonic number H(36,n) = Sum[ 1/k^n, {k,1,36} ].
3, 37, 39, 73, 75, 111, 147, 148, 183, 185, 219, 221, 255, 259, 291, 295, 327, 333, 363, 369, 399, 407, 435, 443, 471, 481, 507, 517, 543, 555, 579, 591, 615, 629, 651, 665, 687, 703, 723, 739, 759, 777, 795, 813, 831, 851, 867, 887, 903, 925, 939, 961, 975
Offset: 1
Links
- Eric Weisstein, The World of Mathematics: Wolstenholme's Theorem.
- Eric Weisstein, The World of Mathematics: Harmonic Number.
Crossrefs
Programs
-
Mathematica
Do[ f=Numerator[ Sum[ 1/k^n, {k,1,36} ] ]; If[ IntegerQ[ f/37^3 ], Print[n] ], {n,1,1000}]
Comments