cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116235 n times n+4 gives the concatenation of two numbers m and m-8.

Original entry on oeis.org

79, 8155, 9799, 467345, 532652, 997999, 76450587, 99979999, 7801738413, 8593817621, 9208120791, 9999799999, 346667333465, 401461854013, 598538145984, 653332666532, 945207479451, 999997999999, 48349470735058
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116247 n times n+2 gives the concatenation of two numbers m and m-6.

Original entry on oeis.org

45, 54, 949950, 979653, 7771781678, 7900890079, 9920892099, 9949999500, 38773083432316, 41534158410841, 47433813119407, 52566186880592, 58465841589158, 61226916567683, 72258945037434, 86156896546724
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116249 n times n+5 gives the concatenation of two numbers m and m-6.

Original entry on oeis.org

8, 9, 98, 99, 361, 635, 712, 921, 998, 999, 8903, 9998, 9999, 81816, 99998, 99999, 336631, 663365, 999998, 999999, 7272725, 9999998, 9999999, 76470587, 99999998, 99999999, 333666331, 405436666, 428571427, 447710183, 454545452
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116254 k times k+4 gives the concatenation of two numbers m and m-5.

Original entry on oeis.org

89, 9077, 9899, 733672, 998999, 88225293, 99989999, 8900869206, 9296908810, 9604060395, 9999899999, 326666333265, 673333666732, 700730927006, 972603739725, 999998999999, 34519562953735, 39737862788836, 49917309624954, 50082690375043, 60262137211161, 65480437046262
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116254_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(-1,a,all_roots=True)):
                m = (k**2+1)//a
                if a*(b+4) <= k**2+1 < a*(a+3):
                    yield k-2
    A116254_list = list(islice(A116254_gen(),40)) # Chai Wah Wu, Feb 19 2024

Extensions

a(19)-a(22) from Chai Wah Wu, Feb 19 2024

A116117 Duplicate of A115431.

Original entry on oeis.org

6, 5346, 8083, 10578, 45531, 58626, 2392902, 2609443, 7272838, 51248898, 98009803, 159728062051, 360408196038, 523637103531, 770378933826, 998000998003, 1214959556998, 1434212848998, 3860012299771, 4243705560771
Offset: 1

Views

Author

Keywords

Crossrefs

Showing 1-5 of 5 results.