cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116136 Numbers k such that k concatenated with k-3 gives the product of two numbers which differ by 4.

Original entry on oeis.org

9, 99, 183, 328, 528, 715, 999, 6099, 9999, 13224, 40495, 99999, 106755, 453288, 999999, 2066115, 2975208, 9999999, 22145328, 28027683, 99999999, 110213248, 110667555, 147928995, 178838403, 226123528, 275074575, 333052608, 378698224, 445332888, 446245635, 518348515
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with itself gives the product of two numbers which differ by 2.

Examples

			8315420899//8315420896 = 9118892968 * 9118892972, where // denotes concatenation.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116136_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(1,a,all_roots=True)):
                if a*(b+3) <= k**2-1 < a*(a+2):
                    yield (k**2-1)//a
    A116136_list = list(islice(A116136_gen(),40)) # Chai Wah Wu, Feb 19 2024

Extensions

Edited by N. J. A. Sloane, Apr 15 2007
a(29)-a(32) from Chai Wah Wu, Feb 19 2024

A116260 n times n+4 gives the concatenation of two numbers m and m-4.

Original entry on oeis.org

9, 99, 999, 9999, 99999, 999999, 9999999, 99999999, 999999999, 9999999999, 36363636362, 45454545453, 54545454544, 63636363635, 72727272726, 81818181817, 90909090908, 99999999999, 999999999999, 9999999999999
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			99999999 * 100000003 = 100000001//99999997, where // denotes concatenation.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116260_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(0,a,all_roots=True))+[a]:
                if a*(b+4) <= k**2 < a*(a+3):
                    yield k-2
    A116260_list = list(islice(A116260_gen(),20)) # Chai Wah Wu, Feb 19 2024

Formula

10^d-1 for d>0 are terms. - Chai Wah Wu, Feb 19 2024

A116268 Numbers k such that k*(k+5) gives the concatenation of two numbers m and m-3.

Original entry on oeis.org

81, 77394227, 89158933, 36623663376237623663376335, 37633762366336633762366235, 62366237633663366237633761, 63376336623762376336623661, 86194223018927804587702128, 88063202723646452838040443, 35574229497606875609044578088011, 35693849662968953146129859753682, 42317841210726174031503123524229
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			89158933 * 89158938 = 79493157//79493154, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    f:= proc(d) local k, K;
          K:= map(t -> rhs(op(t)), [msolve(k^2+5*k+3=0,10^d+1)]);
          op(sort(select(k -> k^2 + 5*k + 3 >= (10^d+1)*10^(d-1), K)));
    end proc:
    map(f, [$1..62]); # Robert Israel, Jul 10 2025

Extensions

More terms from Robert Israel, Jul 10 2025

A116275 Numbers k such that k*(k+4) gives the concatenation of two numbers m and m-2.

Original entry on oeis.org

8872, 9009, 83352840, 99000099, 329767122286, 670232877711, 738226276371, 933006600339, 999000000999, 3779410975143113, 3872816717528065, 4250291784692548, 4278630943941865, 4372036686326817, 4749511753491300, 5250488246508697, 5627963313673180, 5721369056058132
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			99000099 * 99000103 = 98010199//98010197, where // denotes concatenation.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116275_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(2,a,all_roots=True)):
                if a*(b+3) <= k**2-2 < a*(a+2):
                    yield k-2
    A116275_list = list(islice(A116275_gen(),30)) # Chai Wah Wu, Feb 19 2024

Extensions

a(16)-a(18) from Chai Wah Wu, Feb 19 2024

A116266 n times n+2 gives the concatenation of two numbers m and m-3.

Original entry on oeis.org

7, 7311, 8990, 32523, 67476, 76567, 4891729, 5108270, 8528093, 71588335, 98999900, 399659933006, 600340066993, 723627738226, 877712329767, 998999999000, 3485626998113, 3787100274613, 6212899725386, 6514373001886
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			98999900 * 98999902 = 98009803//98009800, where // denotes
concatenation.
		

Crossrefs

Showing 1-5 of 5 results.