cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A115426 Numbers k such that the concatenation of k with k+2 gives a square.

Original entry on oeis.org

7874, 8119, 69476962, 98010199, 108746354942, 449212110367, 544978035127, 870501316279, 998001001999, 1428394731903223, 1499870932756487, 1806498025502498, 1830668275445687, 1911470478658759, 2255786189655202
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

Numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 2.
Numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 4.
Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 6.

Examples

			8119//8121 = 9011^2, where // denotes concatenation.
98010199//98010200 = 99000100 * 99000102.
98010199//98010197 = 99000099 * 99000103.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A115426_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(2,a,all_roots=True)):
                if a*(b-2) <= k**2-2 < a*(a-3):
                    yield (k**2-2)//a
    A115426_list = list(islice(A115426_gen(),40)) # Chai Wah Wu, Feb 20 2024

Extensions

Edited by N. J. A. Sloane, Apr 13 2007

A116267 Numbers k such that k*(k+4) gives the concatenation of two numbers m and m-3.

Original entry on oeis.org

8, 98, 426, 571, 725, 844, 998, 7808, 9998, 36363, 63634, 99998, 326732, 673265, 999998, 4545452, 5454545, 9999998, 47058821, 52941176, 99999998, 331983805, 332667332, 384615384, 422892896, 475524475, 524475522, 577107101, 615384613, 667332665, 668016192, 719964244
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116267_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(1,a,all_roots=True)):
                if a*(b+3) <= k**2-1 < a*(a+2):
                    yield k-2
    A116267_list = list(islice(A116267_gen(),20)) # Chai Wah Wu, Feb 19 2024

Extensions

a(29)-a(32) from Chai Wah Wu, Feb 19 2024

A116288 Numbers k such that k*(k+4) gives the concatenation of a number m with itself.

Original entry on oeis.org

7, 97, 451, 546, 689, 854, 997, 4380, 5617, 9997, 72728, 99997, 346531, 653466, 999997, 9090906, 9999997, 94117644, 99999997, 334665331, 336032385, 378253326, 390977440, 439928489, 483516484, 516483513, 560071508
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Contains 10^m - 3 hence the sequence is infinite. - David A. Corneth, Feb 20 2024

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116288_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(4,a,all_roots=True)):
                if a*b <= k**2-4 < a*(a-1):
                    yield k-2
    A116288_list = list(islice(A116288_gen(),40)) # Chai Wah Wu, Feb 20 2024

A116274 Numbers k such that k*(k+3) gives the concatenation of two numbers m and m-2.

Original entry on oeis.org

9, 99, 362, 636, 713, 922, 999, 8904, 9999, 81817, 99999, 336632, 663366, 999999, 7272726, 9999999, 76470588, 99999999, 333666332, 405436667, 428571428, 447710184, 454545453, 473684210, 526315788, 545454545, 552289814
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116276 Numbers k such that k*(k+5) gives the concatenation of two numbers m and m-2.

Original entry on oeis.org

70, 79822843, 69852478553064869297984899963805, 77473062193002372448027740546437, 77747359197583788609974143907617, 84341826458653210947638195982113, 85367942837521291760016984490249
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			79822843 * 79822848 = 63716866//63716864, where // denotes concatenation.
		

Crossrefs

Showing 1-5 of 5 results.