cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A116364 Row squared sums of Catalan triangle A033184.

Original entry on oeis.org

1, 2, 9, 60, 490, 4534, 45689, 489920, 5508000, 64276492, 773029466, 9531003552, 119990158054, 1537695160070, 20009930706137, 263883333450760, 3521003563829212, 47470845904561648, 645960472314074400
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2006

Keywords

Comments

Number of 321-avoiding permutations in which the length of the longest increasing subsequence is n. Example: a(2)=9 because we have 12, 132, 312, 213, 231, 3142, 3412, 2143 and 2413. Column sums of triangle in A126217 (n >= 1). - Emeric Deutsch, Sep 07 2007

Examples

			The dot product of Catalan row 4 with itself equals
  a(4) = [14,14,9,4,1]*[14,14,9,4,1] = 490
which is equivalent to obtaining the final term in these repeated partial sums of Catalan row 4:
  14,   14,    9,    4,    1
     28,   37,   41,   42
        65,  106,  148
          171,  319
             490
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..n], j-> (Binomial(2*n-j+1, n-j)* (j+1)/(2*n-j+1))^2 )); # G. C. Greubel, May 12 2019
  • Magma
    [(&+[(Binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1))^2: j in [0..n]]): n in [0..30]]; // G. C. Greubel, May 12 2019
    
  • Maple
    a:=proc(k) options operator, arrow: sum((2*k-n+1)^2*binomial(n+1,k+1)^2/(n+1)^2,n=k..2*k) end proc: 1,seq(a(k),k=1..17); # Emeric Deutsch, Sep 07 2007
  • Mathematica
    Table[Sum[(Binomial[2*n-j+1, n-j]*(j+1)/(2*n-j+1))^2, {j, 0, n}], {n, 0, 30}] (* G. C. Greubel, May 12 2019 *)
  • PARI
    a(n)=sum(k=0,n,((k+1)*binomial(2*n-k+1,n-k)/(2*n-k+1))^2)
    
  • Sage
    [sum(( binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1) )^2 for j in (0..n)) for n in (0..30)] # G. C. Greubel, May 12 2019
    

Formula

a(n) = Sum_{k=0..n} (C(2*n-k+1,n-k)*(k+1)/(2*n-k+1))^2.
Showing 1-1 of 1 results.