A116387 Expansion of 1/(sqrt(1-2*x-3*x^2)*(2-M(x))), where M(x) is the g.f. of the Motzkin numbers A001006.
1, 2, 7, 22, 72, 234, 763, 2486, 8099, 26372, 85833, 279226, 907946, 2951066, 9587981, 31140034, 101104048, 328162170, 1064856217, 3454513274, 11204337056, 36332719182, 117795920249, 381848062066, 1237615088203, 4010710218384
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
GAP
List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> Binomial(n, j-k)*Binomial(j, n-j) ))); # G. C. Greubel, May 23 2019
-
Magma
[(&+[ (&+[Binomial(n, j-k)*Binomial(j, n-j): j in [0..n]]) : k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 23 2019
-
Mathematica
Table[Sum[Binomial[n,j-k]Binomial[j,n-j],{k,0,n},{j,0,n}],{n,0,30}] (* Harvey P. Dale, Feb 08 2012 *)
-
PARI
{a(n) = sum(k=0,n, sum(j=0,n, binomial(n, j-k)*binomial(j,n-j)))}; \\ G. C. Greubel, May 23 2019
-
Sage
[sum( sum(binomial(n, j-k)*binomial(j,n-j) for j in (0..n)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, May 23 2019
Formula
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n,j-k)*C(j,n-j).
Conjecture: n*(17*n-142)*a(n) + (17*n^2 + 95*n + 138)*a(n-1) + (-391*n^2 + 2488*n - 2908)*a(n-2) + (-17*n^2 - 603*n + 1892)*a(n-3) + 2*(697*n-2021)*(n-4)*a(n-4) + 60*(17*n-47)*(n-4)*a(n-5) = 0. - R. J. Mathar, Nov 15 2011
a(n) ~ (1+sqrt(5))^n * (5+sqrt(5)) / 10. - Vaclav Kotesovec, Feb 08 2014
Comments