cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116391 Expansion of 1/((1+x)*(sqrt(1-4*x^2)-x)).

Original entry on oeis.org

1, 0, 3, 2, 11, 14, 47, 78, 217, 408, 1039, 2086, 5065, 10560, 24931, 53194, 123403, 267222, 612903, 1340222, 3050679, 6714946, 15205967, 33622158, 75864835, 168275790, 378743151, 841959974, 1891648931, 4211866694, 9450828951
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Crossrefs

Diagonal sums of A116389.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/((1+x)*(Sqrt(1-4*x^2)-x)) )); // G. C. Greubel, May 23 2019
    
  • Mathematica
    CoefficientList[Series[1/((1+x)(Sqrt[1-4(x^2) ]-x)),{x,0,40}],x] (* Harvey P. Dale, Sep 25 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/((1+x)*(sqrt(1-4*x^2)-x))) \\ G. C. Greubel, May 23 2019
    
  • Sage
    (1/((1+x)*(sqrt(1-4*x^2)-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 23 2019

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..k} Sum_{i=0..floor((n-k)/2)} (-1)^(k-j)*C(k,j)*C(i+(j-1)/2,i)*C(j,n-k-2i)*4^i.
Conjecture D-finite with recurrence: n*a(n) +(n)*a(n-1) +3*(-3*n+4)*a(n-2) +3*(-3*n+4)*a(n-3) +20*(n-3)*a(n-4) +20*(n-3)*a(n-5)=0. - R. J. Mathar, Jan 23 2020
a(n) ~ 5^(n/2)/(1+sqrt(5)). - Vaclav Kotesovec, Nov 19 2021