cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116411 Coefficient of x^n in the expansion of (1+x+x^3)^n.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 76, 211, 589, 1597, 4351, 12046, 33496, 93094, 259351, 725089, 2031709, 5701189, 16023181, 45104044, 127134283, 358764613, 1013494318, 2865933907, 8111573416, 22977551656, 65138143006, 184789086106, 524571000799, 1490044262503, 4234901256781, 12042611698876, 34262320521661, 97525522430989
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Binomial transform of central coefficient of (1+x^3)^n.
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,3). [Joerg Arndt, Jul 05 2011]
a(n) also gives the number of lattice paths from (0,0) to (n,2*n) using steps (1,0), (1,2) and (1,3) since if a*(1,0) + b*(1,1) + c*(1,3) denotes a path from (0,0) to (n,n) then c*(1,0) + b*(1,2) + a*(1,3) is a path from (0,0) to (n,2*n) and vice versa. - Peter Bala, Jul 20 2014

Crossrefs

Cf. A071879.

Programs

  • Maple
    series(RootOf( (31*x^3-12*x^2+12*x-4)*A^3+(3-3*x)*A+1, A),x=0,30); # Mark van Hoeij, Apr 16 2013
  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[(1+x+x^3)^n],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 11 2015 *)
    Table[HypergeometricPFQ[{1/3-n/3,2/3-n/3,-n/3},{1/2,1},-27/4],{n,0,20}] (* Benedict W. J. Irwin, Nov 01 2016 *)
  • PARI
    a(n)=polcoeff((1+x+x^3)^n,n); /* Joerg Arndt, Jul 01 2011 */

Formula

a(n) = Sum_{k=0..floor(n/3)} C(n, 3*k)*C(3*k, k).
a(n) = Sum_{k=0..n} C(n, k)*C(k, k/3)*(cos(2*Pi*k/3)+1/2)*2/3.
G.f.: A(x) satisfies (31*x^3-12*x^2+12*x-4)*A(x)^3+(3-3*x)*A(x)+1 = 0. - Mark van Hoeij, Apr 16 2013
From Peter Bala, Jul 20 2014: (Start)
a(n) = coefficient of x^(2*n) in the expansion of (1 + x^2 + x^3)^n.
O.g.f.: sum {n >= 0} binomial(3*n,n)*x^(3*n)/(1 - x)^(3*n + 1).
By the Lagrange inversion formula, the o.g.f. equals the logarithmic derivative of the o.g.f. of A071879.
E.g.f.: exp(x)*sum {n >= 0} x^(3*n)/((2*n)!*n!). (End)
Recurrence: 2*n*(2*n-3)*a(n) = 2*(6*n^2 - 12*n + 5)*a(n-1) - 6*(n-1)*(2*n-3)*a(n-2) + 31*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Feb 11 2015
a(n) ~ (3 + 2^(2/3))^(n+1/2) / (2^(2*n/3 + 1) * sqrt(3*Pi*n)). - Vaclav Kotesovec, Feb 11 2015
a(n) = 3F2[1/3-n/3,2/3-n/3,-n/3; 1/2,1; -27/4]. - Benedict W. J. Irwin, Nov 01 2016