cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116421 a(n) = 2^(n-1)*binomial(2n-1,n-1)^2.

Original entry on oeis.org

0, 1, 18, 400, 9800, 254016, 6830208, 188457984, 5300380800, 151289881600, 4369251780608, 127394382495744, 3743979352236032, 110768619888640000, 3295931587706880000, 98555678764852838400, 2959750227906986803200
Offset: 0

Views

Author

Paul Barry, Feb 14 2006

Keywords

Crossrefs

Cf. A060150.

Programs

Formula

G.f.: 1+(K(32x)-1)/4 where K(k)=Elliptic_F(pi/2,k) is the complete Elliptic integral of the first kind;
e.g.f.: BesselI(0, 2*sqrt(2)x)*BesselI(1, 2*sqrt(2)x)/sqrt(2);
a(n) = 2^(n+1)*(binomial(2n,n)/4)^2 - 0^n/8.
Conjecture: n^2*a(n) - (2*n-1)^2*a(n-1) = 0. - R. J. Mathar, Nov 16 2011