cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116423 Binomial transform of A006053.

Original entry on oeis.org

0, 1, 3, 9, 26, 74, 209, 588, 1651, 4631, 12983, 36388, 101972, 285741, 800660, 2243445, 6286059, 17613241, 49351342, 138279586, 387451077, 1085614208, 3041824015, 8523002359, 23880923183, 66912861640, 187485674652, 525323190505, 1471922876424, 4124236259529
Offset: 1

Views

Author

Gary W. Adamson, Feb 14 2006

Keywords

Comments

a(n)/a(n-1) tends to 2.801... = 1 + 2*cos(Pi/7).
A(n) := a(n+1)*(-1)^(n+1) appears in the following formula for the nonpositive powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^(-n) = C(n) + B(n)*rho + A(n)*sigma, n >= 0, with C(n)= A085810(n)*(-1)^n, and B(n)= A181880(n-2)*(-1)^n. For the nonnegative powers see A120757(n), |A122600(n-1)| and A181879(n), respectively. See also a comment under A052547.
This sequence is constructible as a spiral tiling of similar trapezoids, as follows: start with an isosceles trapezoid with side lengths 3,1,4,1. Each new trapezoid is rotated and scaled so one leg fills all unoccupied space on the short base of the previous trapezoid. a(n) is given by the length of the n-th trapezoid's legs. This process is identical to the recursion relation added by R. J. Mathar in the Formula section. See the Links section for an illustration. - Andrew B. Hudson, Jun 19 2019

Examples

			a(5) = 26 = 1*0 + 1*4 + 4*1 + 4*3 + 6*1 = 4 + 4 + 12 + 6 = 26.
		

Crossrefs

Cf. A006053.

Programs

  • Magma
    I:=[0,1,3]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 11 2019
  • Mathematica
    LinearRecurrence[{4, -3, -1}, {0, 1, 3}, 40] (* Vincenzo Librandi, Jul 11 2019 *)
  • PARI
    concat(0, Vec(x^2*(1-x)/(1-4*x+3*x^2+x^3) + O(x^50))) \\ Michel Marcus, Sep 13 2014
    

Formula

Binomial transform of A006053 starting with A006053(1): (0, 1, 1, 3, 4, 9, 14, ...).
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: x^2(1-x)/(1 - 4x + 3x^2 + x^3).
a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3). (End)

Extensions

More terms from R. J. Mathar, Apr 02 2008
More terms from Michel Marcus, Sep 13 2014