A116430
The number of n-almost primes less than or equal to 10^n, starting with a(0)=1.
Original entry on oeis.org
1, 4, 34, 247, 1712, 11185, 68963, 409849, 2367507, 13377156, 74342563, 407818620, 2214357712, 11926066887, 63809981451, 339576381990, 1799025041767, 9494920297227, 49950199374227, 262036734664892
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 10^n], {n, 0, 13}]
-
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(10^n, n)); \\ Daniel Suteu, Jul 10 2023
-
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A116430(n):
if n<=1: return 3*n+1
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,n))) # Chai Wah Wu, Aug 23 2024
A116426
The number of n-almost primes less than or equal to 4^n, starting with a(0)=1.
Original entry on oeis.org
1, 2, 6, 13, 34, 77, 177, 406, 887, 1962, 4225, 9094, 19482, 41414, 87706, 184976, 389357, 816193, 1708412, 3566209, 7431153, 15457234, 32098652, 66560309, 137830562, 285062028, 588871107, 1215176367, 2505048537, 5159228725
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Join[{1},Table[AlmostPrimePi[n, 4^n], {n, 29}]]
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A116426(n):
if n<=1: return n+1
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
return int(sum(primepi((1<<(n<<1))//prod(c[1] for c in a))-a[-1][0] for a in g(1<<(n<<1),0,1,1,n))) # Chai Wah Wu, Oct 02 2024
A116427
The number of n-almost primes less than or equal to 6^n, starting with a(0)=1.
Original entry on oeis.org
1, 3, 13, 50, 200, 726, 2613, 9061, 30779, 102637, 338230, 1102674, 3566001, 11455355, 36597558, 116395587, 368749900, 1164407829, 3666312894, 11515047829, 36085395700, 112857846859, 352329509934, 1098136237818
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Join[{1},Table[AlmostPrimePi[n, 6^n], {n, 21}]]
A116428
The number of n-almost primes less than or equal to 8^n, starting with a(0)=1.
Original entry on oeis.org
1, 4, 22, 125, 669, 3410, 16677, 78369, 359110, 1612613, 7133274, 31185350, 135062165, 580556958, 2480278767, 10542976739, 44626102826, 188215850830, 791374442571, 3318478309647, 13882441625034, 57952990683107
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]];
Table[ AlmostPrimePi[n, 8^n], {n, 14}] (* Eric W. Weisstein, Feb 07 2006 *)
-
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(8^n, n)); \\ Daniel Suteu, Jul 10 2023
A116429
The number of n-almost primes less than or equal to 9^n, starting with a(0)=1.
Original entry on oeis.org
1, 4, 26, 181, 1095, 6416, 35285, 187929, 973404, 4934952, 24628655, 121375817, 592337729, 2868086641, 13798982719, 66043675287, 314715355786, 1494166794434, 7071357084444, 33374079939405
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 9^n], {n, 13}]
-
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(9^n, n)); \\ Daniel Suteu, Jul 10 2023
a(16) corrected and a(17)-a(19) from
Daniel Suteu, Jul 10 2023
A116431
The number of n-almost primes less than or equal to 12^n, starting with a(0)=1.
Original entry on oeis.org
1, 5, 48, 434, 3695, 29165, 218283, 1569995, 10950776, 74621972, 499495257, 3297443264, 21533211312, 139411685398, 896352197825, 5730605551626, 36465861350230
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 12^n], {n, 12}]
-
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(12^n, n)); \\ Daniel Suteu, Jul 10 2023
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A116431(n):
if n<=1: return 4*n+1
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
return int(sum(primepi(12**n//prod(c[1] for c in a))-a[-1][0] for a in g(12**n,0,1,1,n))) # Chai Wah Wu, Sep 28 2024
Showing 1-6 of 6 results.
Comments