A116449 Number of partitions of n into an equal number of prime and composite parts.
1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 4, 3, 4, 4, 6, 6, 11, 11, 13, 17, 20, 26, 32, 37, 43, 55, 63, 81, 92, 111, 126, 159, 183, 225, 259, 307, 357, 430, 497, 589, 683, 797, 929, 1093, 1270, 1478, 1712, 1979, 2303, 2665, 3086, 3556, 4102, 4716, 5444, 6256, 7194, 8243, 9456, 10824
Offset: 0
Keywords
Examples
a(14) = #{2+2*2*3, (2+2)+(2*3+2*2), 5+3*3, (3+3)+(2*2+2*2)} = 4; a(15) = #{3+2*2*3, 5+2*5, (2+3)+(2*2+2*3), 7+2*2*2, (2+5)+(2*2+2*2), 11+2*2} = 6.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
terms = 61; pp = 1/(Product[1 - If[PrimeQ[k], y, 1/y]*x^k, {k, 2, terms-3}] + O[x]^terms) // Normal; Take[Expand[pp ], terms-5] // CoefficientList[#, x]& (* Jean-François Alcover, Dec 30 2017, after Andrew Howroyd *)
-
PARI
parts(n)={1/(prod(k=2, n, 1 - if(isprime(k), y, 1/y)*x^k + O(x*x^n)))} {my(n=60); apply(p->polcoeff(p,0), Vec(parts(n)))} \\ Andrew Howroyd, Dec 29 2017
Extensions
a(0)=1 from Andrew Howroyd, Dec 29 2017
Comments