A116483 Expansion of (1 + x) / (5*x^2 - 2*x + 1).
1, 3, 1, -13, -31, 3, 161, 307, -191, -1917, -2879, 3827, 22049, 24963, -60319, -245453, -189311, 848643, 2643841, 1044467, -11130271, -27482877, 685601, 138785587, 274143169, -145641597, -1661999039, -2595790093, 3118415009, 19215780483
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (2,-5).
Programs
-
PARI
a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])+imag(v[k]));} /* cf. A138749 */ /* Joerg Arndt, Jul 06 2011 */
-
PARI
Vec((1 + x) / (5*x^2 - 2*x + 1) + O(x^50)) \\ Colin Barker, Aug 25 2017
Formula
a(n) = 2*a(n-1) -5*a(n-2). - Paul Curtz, Apr 18 2011
a(n) = (1/2 + i/2)*((1 - 2*i)^n - i*(1 + 2*i)^n) where i=sqrt(-1). - Colin Barker, Aug 25 2017
Comments