cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116515 a(n) = the period of the Fibonacci numbers modulo p divided by the smallest m such that p divides Fibonacci(m), where p is the n-th prime.

Original entry on oeis.org

1, 2, 4, 2, 1, 4, 4, 1, 2, 1, 1, 4, 2, 2, 2, 4, 1, 4, 2, 1, 4, 1, 2, 4, 4, 1, 2, 2, 4, 4, 2, 1, 4, 1, 4, 1, 4, 2, 2, 4, 1, 1, 1, 4, 4, 1, 1, 2, 2, 1, 4, 1, 2, 1, 4, 2, 4, 1, 4, 2, 2, 4, 2, 1, 4, 4, 1, 4, 2, 1, 4, 1, 2, 4, 1, 2, 4, 4, 2, 2, 1, 4, 1, 4, 1, 2, 2, 4, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 2, 2, 1
Offset: 1

Views

Author

Nick Krempel, Mar 24 2006

Keywords

Comments

Conditions on p_n mod 4 and mod 5 restrict possible values of a(n). The unknown (?) case is p = 1 mod 4 and (5|p) = 1, equivalently, p = 1 or 9 mod 20, where {1, 2, 4} all occur.
Number of zeros in fundamental period of Fibonacci numbers mod prime(n). [From T. D. Noe, Jan 14 2009]

Examples

			a(4) = 2, as 7 is the 4th prime, the Fibonacci numbers mod 7 have period 16, the first Fibonacci number divisible by 7 is F(8) = 21 = 3*7 and 16 / 8 = 2.
One period of the Fibonacci numbers mod 7 is 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, which has two zeros. Hence a(4)=2. [From _T. D. Noe_, Jan 14 2009]
		

Crossrefs

Cf. A112860, A053027, A053028 (primes producing 1, 2 and 4 zeros) [From T. D. Noe, Jan 14 2009]

Formula

a(n) = A060305(n) / A001602(n). a(n) is always one of {1, 2, 4}.
a(n) = A001176(prime(n)) [From T. D. Noe, Jan 14 2009]