A116521 Binomial transform of tetranacci sequence A000078.
0, 0, 0, 1, 5, 17, 51, 148, 429, 1250, 3655, 10701, 31336, 91752, 268623, 786414, 2302262, 6739984, 19731685, 57765711, 169112717, 495088023, 1449400960, 4243211207, 12422263776, 36366946961, 106466490879, 311687250156
Offset: 0
Examples
Table shows the tetranacci numbers multiplied into rows of Pascal's triangle. 1*0 = 0. 1*0 + 1*0 = 0. 1*0 + 2*0 + 1*0 = 0. 1*0 + 3*0 + 3*0 + 1* 1 = 1. 1*0 + 4*0 + 6*0 + 4*1 + 1*1 = 5. 1*0 + 5*0 + 10*0 + 10*1 + 5*1 + 1*2 = 17.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-8,6,-1).
Programs
-
Maple
t[0]:=0: t[1]:=0: t[2]:=0: t[3]:=1: for n from 4 to 35 do t[n]:=t[n-1]+t[n-2]+t[n-3]+t[n-4] od: seq(add(binomial(n,k)*t[k],k=0..n),n=0..30); # end of first Maple program G:=x^3/(1-5*x+8*x^2-6*x^3+x^4): Gser:=series(G,x=0,33): seq(coeff(Gser,x,n),n=0..30); # Emeric Deutsch, Apr 09 2006
-
Mathematica
LinearRecurrence[{5,-8,6,-1}, {0,0,0,1}, 25] (* G. C. Greubel, Nov 03 2016 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,6,-8,5]^n*[0;0;0;1])[1,1] \\ Charles R Greathouse IV, Jun 28 2017
Formula
a(n) = Sum_{k=0..n} C(n,k) * A000078(k).
G.f.: x^3/(1-5*x+8*x^2-6*x^3+x^4). - Emeric Deutsch, Apr 09 2006
a(n) = 5*a(n-1) - 8*a(n-2) + 6*a(n-3) - a(n-4). - G. C. Greubel, Nov 03 2016
Extensions
Definition corrected by Franklin T. Adams-Watters, Mar 13 2006
More terms from Emeric Deutsch, Apr 09 2006
Comments