cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116526 a(0)=1, a(1)=1, a(n) = 9*a(n/2) for even n >= 2, and a(n) = 8*a((n-1)/2) + a((n+1)/2) for odd n >= 3.

Original entry on oeis.org

0, 1, 9, 17, 81, 89, 153, 217, 729, 737, 801, 865, 1377, 1441, 1953, 2465, 6561, 6569, 6633, 6697, 7209, 7273, 7785, 8297, 12393, 12457, 12969, 13481, 17577, 18089, 22185, 26281, 59049, 59057, 59121, 59185, 59697, 59761, 60273, 60785, 64881, 64945, 65457, 65969
Offset: 0

Views

Author

Roger L. Bagula, Mar 15 2006

Keywords

Comments

A 9-divide version of A084230.
The interest this one has is in the prime form of even odd 2^n+1, 2^n.
From Gary W. Adamson, Aug 30 2016: (Start)
Let M =
1, 0, 0, 0, 0, ...
9, 0, 0, 0, 0, ...
8, 1, 0, 0, 0, ...
0, 9, 0, 0, 0, ...
0, 8, 1, 0, 0, ...
0, 0, 9, 0, 0, ...
0, 0, 8, 1, 0, ...
...
Then M^k converges to a single nonzero column giving the sequence.
The sequence divided by its aerated variant is (1, 9, 8, 0, 0, 0, ...). (End)

Crossrefs

Programs

  • Maple
    a:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 0 then 9*a(n/2) else 8*a((n-1)/2)+a((n+1)/2) fi end: seq(a(n),n=0..45);
  • Mathematica
    b[0] := 0; b[1] := 1; b[n_?EvenQ] := b[n] = 9*b[n/2]; b[n_?OddQ] := b[n] = 8*b[(n - 1)/2] + b[(n + 1)/2]; a = Table[b[n], {n, 1, 25}]

Formula

a(n) = Sum_{k=0..n-1} 8^wt(k), where wt = A000120. - Mike Warburton, Mar 14 2019
a(n) = Sum_{k=0..floor(log_2(n))} 8^k*A360189(n-1,k). - Alois P. Heinz, Mar 06 2023

Extensions

Edited by N. J. A. Sloane, Apr 16 2006