A116529 a(2*n + 1) = a(n), a(2*n + 2) = 2*a(n) + a(n-1).
1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 7, 5, 12, 1, 7, 4, 9, 3, 10, 7, 17, 2, 11, 7, 16, 5, 17, 12, 29, 1, 14, 7, 15, 4, 15, 9, 22, 3, 15, 10, 23, 7, 24, 17, 41, 2, 21, 11, 24, 7, 25, 16, 39, 5, 26, 17, 39, 12, 41, 29, 70, 1, 31, 14, 29, 7, 28, 15
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Kevin Ryde, PARI/GP Code
Programs
-
Maple
gg:= 1: for iter from 1 to 7 do gg:= convert(series(1+(x^4+2*x^2+x)*eval(gg,x=x^2), x, 2^iter+1),polynom) od: seq(coeff(gg,x,n),n=0..2^7); # Robert Israel, Nov 13 2017
-
Mathematica
b[0] := 0; b[1] := 1; b[n_?EvenQ] := b[n] = b[n/2]; b[n_?OddQ] := b[n] = 2*b[(n - 1)/2] + b[(n - 3)/2]; Table[b[n], {n, 1, 70}]
-
PARI
\\ See links.
Formula
From G. C. Greubel, Oct 30 2016: (Start)
a(2*n + 1) = a(n), n>=1.
a(2*n + 2) = 2*a(n) + a(n-1), n>=1. (End)
G.f. g(x) satisfies g(x) = 1 + (x^4+2*x^2+x)*g(x^2). - Robert Israel, Nov 13 2017
Extensions
New name using formula, Joerg Arndt, Dec 17 2022