cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A287920 Triangle T(n,k) read by rows: T(n,k) = floor(prime(n)/prime(k)), n >= k >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 3, 2, 1, 1, 6, 4, 2, 1, 1, 1, 8, 5, 3, 2, 1, 1, 1, 9, 6, 3, 2, 1, 1, 1, 1, 11, 7, 4, 3, 2, 1, 1, 1, 1, 14, 9, 5, 4, 2, 2, 1, 1, 1, 1, 15, 10, 6, 4, 2, 2, 1, 1, 1, 1, 1, 18, 12, 7, 5, 3, 2, 2, 1, 1, 1, 1, 1, 20, 13, 8, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Bob Selcoe, Jun 02 2017

Keywords

Comments

Alternate name: triangle of quotients of prime(n)/prime(k), n >= k >= 1.

Examples

			Triangle starts:
n/k  1  2  3  4  5  6  7  8  9 10 11 12
1    1
2    1  1
3    2  1  1
4    3  2  1  1
5    5  3  2  1  1
6    6  4  2  1  1  1
7    8  5  3  2  1  1  1
8    9  6  3  2  1  1  1  1
9    11 7  4  3  2  1  1  1  1
10   14 9  5  4  2  2  1  1  1  1
11   15 10 6  4  2  2  1  1  1  1  1
12   18 12 7  5  3  2  2  1  1  1  1  1
T(11,3) = 6 because prime(11) = 31 and prime(3) = 5, and floor(31/5) = 6.
		

Crossrefs

Cf. A000040 (primes), A130290 (1st column), A144769 (2nd column), A116572 (3rd column).

Programs

  • PARI
    T(n,k) = prime(n)\prime(k);
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Jun 06 2017
Showing 1-1 of 1 results.