A116573 A Binet type formula from a polynomial whose coefficient expansion gives a tribonacci used as its first derivative InverseZtransform: A000073.
1, 0, 4, 17, 1, 82, 324, 49, 961, 5185, 2501, 5776, 57600, 54290, 15625, 497026, 801025, 1, 3437317, 9120400, 1256641, 18714277, 85766122, 38850289, 72999937
Offset: 0
References
- Private email from Bob Hanlon (hanlonr(AT)cox.net), Mar 18 2006
Crossrefs
Cf. A000073.
Programs
-
Mathematica
g[x_] = -(x/(x^3 + x^2 + x - 1)); dg[x_] = D[g[x], {x, 1}]; w[n_] := InverseZTransform[dg[x], x, n] // ToRadicals; Table[Abs[Floor[N[w[n]]]]^2, {n, 1, 25}]
Formula
g[x_] = -(x/(x^3 + x^2 + x - 1)); dg[x_] = D[g[x], {x, 1}]; w[n_] := InverseZTransform[dg[x], x, n] // ToRadicals; a(n) =Abs[w[n]]^2
Comments