A116599 Triangle read by rows: T(n,k) is the number of partitions of n having exactly k parts equal to 2 (n>=0, 0<=k<=floor(n/2)).
1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 2, 1, 6, 3, 1, 1, 8, 4, 2, 1, 11, 6, 3, 1, 1, 15, 8, 4, 2, 1, 20, 11, 6, 3, 1, 1, 26, 15, 8, 4, 2, 1, 35, 20, 11, 6, 3, 1, 1, 45, 26, 15, 8, 4, 2, 1, 58, 35, 20, 11, 6, 3, 1, 1, 75, 45, 26, 15, 8, 4, 2, 1, 96, 58, 35, 20, 11, 6, 3, 1, 1, 121, 75, 45, 26, 15, 8, 4, 2, 1
Offset: 0
Examples
T(6,1)=3 because we have [4,2], [3,2,1] and [2,1,1,1,1]. Triangle starts: 1; 1; 1,1; 2,1; 3,1,1; 4,2,1; 6,3,1,1; 8,4,2,1;
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
Maple
with(combinat): T:=proc(n,k) if k=floor(n/2) then 1 elif k<=(n-2)/2 then numbpart(n-2*k)-numbpart(n-2*k-2) fi end: for n from 0 to 18 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
nn = 20; p = Product[1/(1 - x^i), {i, 3, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, CoefficientList[Series[p /(1 - x)/(1 - y x^2), {x, 0, nn}], {x, y}]] // Flatten (* Geoffrey Critzer, Jan 22 2012 *)
Formula
Extensions
Keyword tabl changed to tabf by Michel Marcus, Apr 09 2013
Comments