cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116603 Coefficients in asymptotic expansion of sequence A052129.

Original entry on oeis.org

1, 2, -1, 4, -21, 138, -1091, 10088, -106918, 1279220, -17070418, 251560472, -4059954946, 71250808916, -1351381762990, 27552372478592, -601021307680207, 13969016314470386, -344653640328891233, 8997206549370634644, -247772400254700937149, 7178881153198162073002
Offset: 0

Views

Author

Michael Somos, Feb 18 2006

Keywords

Examples

			G.f. = 1 + 2*x - x^2 + 4*x^3 - 21*x^4 + 138*x^5 - 1091*x^6 + 10088*x^7 + ...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -A[x] + 2/A[x/(1+x)]^(-1/2)*(1+x) + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 28 2011, updated Jan 12 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A=1; for( k=1, n, A = truncate( A + O(x^k)) + x * O(x^k); A = -A + 2 / subst(A^(-1/2), x, x/(1 + x)) * (1 + x);); polcoeff(A, n))};

Formula

a(0) = 1; thereafter, a(n) = (1/n)*Sum_{j=1..n} (-1)^(j-1)*2*b(j)*a(n-j), where b(j) = A000670(j) [Nemes]. - N. J. A. Sloane, Sep 11 2017
G.f. A(x) satisfies (1 + x)^2 = A(x)^2 / A(x/(1 + x)).
A003504(n+1) ~ C^(2^n) * (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...) where C = 1.04783144757... (see A115632).
A052129(n) ~ s^(2^n) / (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...) where s = 1.661687949633... (see A112302).
From Seiichi Manyama, May 26 2025: (Start)
G.f.: Product_{k>=1} (1 + k*x)^(1/2^k).
G.f.: exp(2 * Sum_{k>=1} (-1)^(k-1) * A000670(k) * x^k/k).
G.f.: 1/B(-x), where B(x) is the g.f. of A084785. (End)
a(n) ~ (-1)^(n+1) * (n-1)! / log(2)^(n+1). - Vaclav Kotesovec, May 27 2025