A116674 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts and having exactly k distinct parts (n>=1, k>=1).
1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 3, 1, 5, 3, 4, 1, 2, 7, 1, 2, 8, 2, 2, 10, 3, 2, 11, 5, 2, 13, 7, 4, 12, 11, 1, 19, 11, 1, 2, 18, 17, 1, 3, 20, 21, 2, 2, 22, 27, 3, 2, 25, 32, 5, 4, 24, 41, 7, 2, 30, 46, 11, 2, 31, 56, 15, 2, 36, 62, 22, 3, 33, 80, 25, 1, 2, 39, 87, 36, 1, 4, 38, 103, 45, 2, 2, 45
Offset: 1
Examples
From _Gus Wiseman_, Jun 24 2025: (Start) Triangle begins: 1: 1 2: 1 3: 2 4: 1 1 5: 2 1 6: 2 2 7: 2 3 8: 1 5 9: 3 4 1 10: 2 7 1 11: 2 8 2 12: 2 10 3 13: 2 11 5 14: 2 13 7 15: 4 12 11 16: 1 19 11 1 17: 2 18 17 1 18: 3 20 21 2 19: 2 22 27 3 20: 2 25 32 5 Row n = 9 counts the following partitions into odd parts by number of distinct parts: (9) (7,1,1) (5,3,1) (3,3,3) (3,3,1,1,1) (1,1,1,1,1,1,1,1,1) (5,1,1,1,1) (3,1,1,1,1,1,1) Row n = 9 counts the following strict partitions by number of maximal runs: (9) (6,3) (5,3,1) (5,4) (7,2) (4,3,2) (8,1) (6,2,1) (End)
Links
- Alois P. Heinz, Rows n = 1..1000, flattened
Crossrefs
Programs
-
Maple
g:=product(1+t*x^(2*j-1)/(1-x^(2*j-1)),j=1..35): gser:=simplify(series(g,x=0,34)): for n from 1 to 29 do P[n]:=coeff(gser,x^n) od: for n from 1 to 29 do seq(coeff(P[n],t,j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form # second Maple program: with(numtheory): b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-2)*`if`(j=0, 1, x), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))( b(n, iquo(n+1, 2)*2-1)): seq(T(n), n=1..30); # Alois P. Heinz, Mar 08 2015
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-2]*If[j == 0, 1, x], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, Quotient[n+1, 2]*2-1]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[n],OddQ[Times@@#]&&Length[Union[#]]==k&]],{n,1,12},{k,1,Floor[Sqrt[n]]}] (* Gus Wiseman, Jun 24 2025 *)
Formula
G.f.: product(1+tx^(2j-1)/(1-x^(2j-1)), j=1..infinity).
Comments