cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116684 Sum of the even parts in all partitions of n into distinct parts.

Original entry on oeis.org

0, 0, 2, 2, 4, 6, 14, 18, 22, 34, 50, 66, 88, 118, 154, 202, 248, 320, 412, 512, 636, 794, 972, 1194, 1454, 1766, 2134, 2576, 3092, 3696, 4426, 5254, 6214, 7364, 8672, 10196, 11986, 14014, 16360, 19084, 22190, 25746, 29860, 34516, 39846, 45952, 52848
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Examples

			a(9)=34 because in the partitions of 9 into distinct parts, namely, [9],[8,1],[7,2],[6,3],[6,2,1],[5,4],[5,3,1] and [4,3,2], the sum of the even parts is 8+2+6+6+2+4+4+2=34.
		

Crossrefs

Programs

  • Maple
    f:=2*product(1+x^j,j=1..60)*sum((j*x^(2*j)/(1+x^(2*j)),j=1..35)): fser:=series(f,x=0,55): seq(coeff(fser,x,n),n=0..50);
  • Mathematica
    d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]
    Map[Total[Select[Flatten[d[#]], EvenQ]] &, -1 + Range[30]]  (* Peter J. C. Moses, Mar 14 2014 *)
    (* or *)
    CoefficientList[Series[QPochhammer[-1, x]*(EllipticTheta[3, 0, x]^4 + EllipticTheta[4, 0, x]^4 - 2)/48, {x, 0, 100}], x] (* Vaclav Kotesovec, Jun 24 2025 *)

Formula

a(n) = Sum_{k>=0} k*A116683(n,k).
G.f.: 2*(Product_{j>=1} 1+x^j)*(Sum_{j>=1} j*x^(2*j)/(1+x^(2*j))).
A116682(n) + a(n) = A066189(n) = n*A000009(n). - Vaclav Kotesovec, Jun 24 2025
a(n) = Sum_{k=0..floor(n/2)} A000700(n-2*k) * A000009(2*k) * (2*k). - David A. Corneth, Jun 24 2025