A116684 Sum of the even parts in all partitions of n into distinct parts.
0, 0, 2, 2, 4, 6, 14, 18, 22, 34, 50, 66, 88, 118, 154, 202, 248, 320, 412, 512, 636, 794, 972, 1194, 1454, 1766, 2134, 2576, 3092, 3696, 4426, 5254, 6214, 7364, 8672, 10196, 11986, 14014, 16360, 19084, 22190, 25746, 29860, 34516, 39846, 45952, 52848
Offset: 0
Keywords
Examples
a(9)=34 because in the partitions of 9 into distinct parts, namely, [9],[8,1],[7,2],[6,3],[6,2,1],[5,4],[5,3,1] and [4,3,2], the sum of the even parts is 8+2+6+6+2+4+4+2=34.
Links
- David A. Corneth, Table of n, a(n) for n = 0..10000
Programs
-
Maple
f:=2*product(1+x^j,j=1..60)*sum((j*x^(2*j)/(1+x^(2*j)),j=1..35)): fser:=series(f,x=0,55): seq(coeff(fser,x,n),n=0..50);
-
Mathematica
d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &] Map[Total[Select[Flatten[d[#]], EvenQ]] &, -1 + Range[30]] (* Peter J. C. Moses, Mar 14 2014 *) (* or *) CoefficientList[Series[QPochhammer[-1, x]*(EllipticTheta[3, 0, x]^4 + EllipticTheta[4, 0, x]^4 - 2)/48, {x, 0, 100}], x] (* Vaclav Kotesovec, Jun 24 2025 *)
Formula
a(n) = Sum_{k>=0} k*A116683(n,k).
G.f.: 2*(Product_{j>=1} 1+x^j)*(Sum_{j>=1} j*x^(2*j)/(1+x^(2*j))).