cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A116682 Sum of the odd parts in all partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 0, 4, 4, 9, 10, 17, 26, 38, 50, 66, 92, 116, 154, 203, 264, 326, 416, 514, 644, 802, 986, 1198, 1474, 1784, 2156, 2608, 3124, 3728, 4454, 5286, 6266, 7420, 8736, 10279, 12062, 14106, 16472, 19214, 22330, 25914, 30032, 34714, 40058, 46208, 53136
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Examples

			a(9)=38 because in the partitions of 9 into distinct parts, namely, [9],[8,1],[7,2],[6,3],[6,2,1],[5,4],[5,3,1] and [4,3,2], the sum of the odd parts is 9+1+7+3+1+5+5+3+1+3=38.
		

Crossrefs

Programs

  • Maple
    f:=product(1+x^j,j=1..70)*sum((2*j-1)*x^(2*j-1)/(1+x^(2*j-1)),j=1..40): fser:=series(f,x=0,60): seq(coeff(fser,x,n),n=0..50);
  • Mathematica
    d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]
    Map[Total[Select[Flatten[d[#]], OddQ]] &, -1 + Range[30]]  (* Peter J. C. Moses, Mar 14 2014 *)
    (* or *)
    CoefficientList[Series[QPochhammer[-1, x]*(1 + EllipticTheta[2, 0, x]^4 - EllipticTheta[4, 0, x]^4)/48, {x, 0, 100}], x] (* Vaclav Kotesovec, Jun 24 2025 *)

Formula

a(n) = Sum_{k=0..n} k*A116681(n,k).
G.f.: (Product_{j>=1} 1+x^j)*(Sum_{j>=1} (2*j-1)*x^(2*j-1)/(1+x^(2*j-1))).
a(n) + A116684(n) = A066189(n) = n*A000009(n). - Vaclav Kotesovec, Jun 24 2025
a(n) = Sum_{k=0..floor(n/2)} A000700(n-2*k) * A000009(2*k) * (n - 2*k). - David A. Corneth, Jun 24 2025

A116683 Triangle read by rows: T(n,k) is the number of partitions of n into distinct parts, in which the sum of the even parts is k (n>=0, 0<=k<=n).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 1, 0, 0, 0, 2, 2, 0, 1, 0, 1, 0, 2, 0, 2, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 3, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 3, 3, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 3, 0, 2, 0, 2, 0, 2, 0, 2, 0, 3, 0, 4, 3, 0, 3, 0, 2, 0, 4
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Comments

Row 2n-1 has 2n-1 terms; row 2n has 2n+1 terms. Row sums yield A000009. T(n,0)=A000700(n). Columns 2n-1 contain only 0's. Sum(k*T(n,k), k=0..n)=A116684(n).

Examples

			T(9,6)=2 because we have [6,3] and [4,3,2].
Triangle starts:
1;
1;
0,0,1;
1,0,1;
1,0,0,0,1;
1,0,1,0,1;
1,0,1,0,0,0,2
		

Crossrefs

Programs

  • Maple
    g:=product((1+x^(2*j-1))*(1+(t*x)^(2*j)),j=1..30): gser:=simplify(series(g,x=0,20)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..2*floor(n/2)) od; # yields sequence in triangular form

Formula

G.f.=product((1+x^(2j-1))(1+(tx)^(2j)), j=1..infinity).

A239292 (sum of all odd parts of all strict partitions of n) - (sum of all even parts of all strict partitions of n); for "strict", see Comments.

Original entry on oeis.org

0, 1, -2, 2, 0, 3, -4, -1, 4, 4, 0, 0, 4, -2, 0, 1, 16, 6, 4, 2, 8, 8, 14, 4, 20, 18, 22, 32, 32, 32, 28, 32, 52, 56, 64, 83, 76, 92, 112, 130, 140, 168, 172, 198, 212, 256, 288, 318, 368, 416, 456, 527, 564, 640, 712, 806, 884, 985, 1116, 1224, 1344, 1496
Offset: 0

Views

Author

Clark Kimberling, Mar 14 2014

Keywords

Comments

A strict partition is one having distinct parts. a(n) < 0 if and only if n is one of these: 2,6,7,13.

Examples

			The strict partitions of 6 are 6, 51, 42, 321.  The sum of all the odd parts is 10 and the sum of all the even parts is 14, so that a(6) = -4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, [1, 0], b(n, i-1) +`if`(i>n, 0, (p->p+
          [0, p[1]*`if`(irem(i, 2)=1, i, -i)])(b(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]; Map[Total[Select[#, OddQ]] - Total[Select[#, EvenQ]]&[Flatten[d[#]]] &, -1 + Range[55]]  (* Peter J. C. Moses, Mar 14 2014 *)
    b[n_, i_] := b[n, i] = If[n > i (i + 1)/2, 0,
         If[n == 0, {1, 0}, b[n, i - 1] + If[i > n, 0, Function[p, p +
         {0, p[[1]]*If[Mod[i, 2] == 1, i, -i]}][b[n - i, i - 1]]]]];
    a[n_] := b[n, n][[2]];
    a /@ Range[0, 80] (* Jean-François Alcover, May 31 2021, after Alois P. Heinz *)

Formula

a(n) = A116682(n) - A116684(n) for n >= 0.
Showing 1-3 of 3 results.