A116723 We have one bead labeled i for every i=1, 2, ...; a(n) = number of necklaces that can be made using any subset of the first n beads.
1, 2, 4, 8, 18, 53, 219, 1201, 8055, 62860, 556070, 5488126, 59740688, 710771367, 9174170117, 127661752527, 1904975488573, 30341995265190, 513771331467544, 9215499383109764, 174548332364311774, 3481204991988351785, 72920994844093191807, 1600596371590399672061
Offset: 0
Keywords
Examples
For example for n=4 we have {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}, {1,2,4,3}, {1,3,2,4}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Qu Cao, Jin Dong, Song He, and Fan Zhu, On one-loop amplitudes in gauge theories, arXiv:2412.19629 [hep-th], 2024. See p. 4.
- Index entries for sequences related to necklaces
Crossrefs
Row sums of A144151. - Alois P. Heinz, Jun 01 2009
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, 2^n, `if`(n=4, 18, ((n^3-4*n^2+n)*a(n-1) -(2*n-2)*(n^2-4*n+2)*a(n-2) +n*(n-2)*(n-3)*a(n-3)) / ((n-1)*(n-4)))) end: seq(a(n), n=0..30); # Alois P. Heinz, Jul 22 2016
-
Mathematica
a[n_] := 1 + n + n(n-1)/2 + Sum[n!/(2k(n-k)!), {k, 3, n}]; a /@ Range[0, 30] (* Jean-François Alcover, Nov 09 2020 *)
-
PARI
a(n) = 1 + n + n*(n-1)/2 + sum(k=3, n, n!/(2*k*(n-k)!)); \\ Michel Marcus, Nov 09 2020
Formula
a(n) = 1 + n + n(n-1)/2 + Sum_{k=3..n} n!/(2k(n-k)!).
Extensions
More terms from Washington Bomfim, Aug 29 2008
Comments