A116728 Number of permutations of length n which avoid the patterns 321, 1243, 2134.
1, 2, 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103, 110, 117, 124, 131, 138, 145, 152, 159, 166, 173, 180, 187, 194, 201, 208, 215, 222, 229, 236, 243, 250, 257, 264, 271, 278, 285, 292, 299, 306, 313, 320, 327, 334, 341, 348, 355, 362, 369
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..5000
- Lara Pudwell, Systematic Studies in Pattern Avoidance, 2005.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Cf. A017041.
Programs
-
Maple
t := taylor((4*x^3+2*x^2+1)*x/(x-1)^2,x,51):seq(coeff(t,x,n),n=1..50); # Nathaniel Johnston, Apr 27 2011
-
PARI
Vec(x*(1 + 2*x^2 + 4*x^3) / (1 - x)^2 + O(x^70)) \\ Colin Barker, Oct 24 2017
Formula
G.f.: x*(1 + 2*x^2 + 4*x^3) / (1 - x)^2.
For n >= 3, a(n) = 7*n - 16. - Franklin T. Adams-Watters, Sep 16 2006
a(n) = 2*a(n-1) - a(n-2) for n=4. - Colin Barker, Oct 24 2017
a(n) = A017041(n-3) for n > 2. - Georg Fischer, Oct 07 2018
E.g.f.: exp(x)*(7*x - 16) + 2*(x^2 + 5*x + 8). - Stefano Spezia, Oct 10 2022