A116731 Number of permutations of length n which avoid the patterns 321, 2143, 3124; or avoid the patterns 132, 2314, 4312, etc.
1, 2, 5, 12, 25, 46, 77, 120, 177, 250, 341, 452, 585, 742, 925, 1136, 1377, 1650, 1957, 2300, 2681, 3102, 3565, 4072, 4625, 5226, 5877, 6580, 7337, 8150, 9021, 9952, 10945, 12002, 13125, 14316, 15577, 16910, 18317, 19800, 21361, 23002, 24725, 26532
Offset: 1
Links
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, arXiv:1302.2274 [math.CO], 2013.
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Integers: Electronic Journal of Combinatorial Number Theory, 15 (2015), #A16.
- Lara Pudwell, Systematic Studies in Pattern Avoidance, 2005.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1)
Programs
-
Mathematica
Table[(n^3-3*n^2+5*n)/3,{n,100}] (* Vladimir Joseph Stephan Orlovsky, May 04 2011 *)
Formula
G.f.: (3*x^2 - 2*x + 1)*x/(x - 1)^4.
a(n) = (n^3 - 3*n^2 + 5*n)/3. - Franklin T. Adams-Watters, Sep 13 2006
a(n) = A006527(n-1) + 1. - Vladimir Joseph Stephan Orlovsky, May 04 2011
E.g.f.: exp(x)*(x + x^3/3). - Nikolaos Pantelidis, Feb 05 2023
Extensions
More terms from Franklin T. Adams-Watters, Sep 13 2006
Comments