A116859 Sum of the sizes of the Durfee squares of all partitions of n into distinct parts.
1, 1, 2, 2, 4, 6, 8, 10, 14, 18, 22, 29, 36, 46, 59, 72, 88, 110, 132, 160, 194, 232, 276, 330, 392, 464, 550, 648, 760, 894, 1044, 1216, 1418, 1644, 1905, 2204, 2540, 2924, 3364, 3859, 4420, 5060, 5778, 6590, 7514, 8544, 9706, 11018, 12484, 14130, 15980
Offset: 1
Keywords
Examples
a(8)=10 because the partitions of 8 into distinct parts are [8],[7,1],[6,2],[5,3],[5,2,1] and [4,3,1], the sum of the sizes of their Durfee squares being 1+1+2+2+2+2=10.
Crossrefs
Cf. A116858.
Programs
-
Maple
f:=sum(k*x^(k*(3*k-1)/2)*(1+x^(2*k))*product((1+x^j)/(1-x^j),j=1..k-1)/(1-x^k),k=1..10): fser:=series(f,x=0,60): seq(coeff(fser,x^n),n=1..55);
Formula
G.f.=sum(kx^(k(3k-1)/2)*(1+x^(2k))*product((1+x^j)/(1-x^j), j=1..k-1)/(1-x^k), k=1..infinity).
Comments